

GENERAL NOTES: (continued)

Poy Item Notes:

Bridge No. of existing structure is 2842 . Plon Nos. ore $195-09$ and 195-094,

 he survey procedure ond identitied critical dimensions ond elievotions thot will be resilts. The existing. structure is designoted a Type B structure in occordance with Section 411
of the Specificotions.

All spans sholl consist of preconstructed composite units.
B.M.: Temporary bench mark to be estoblished by the Controctor

BRIDGE LAYOUT

${ }^{3}$	2. 12, 13, 15, 16, 21, 32, 33,	${ }^{1-7-11}$
12	2. 5. 6, 7, 8, , 17, 32 ond 33	$9-22-10$
\triangle	2 ond 22	6-10-10
Rev no.	Sheets Revised	Dote
table of revisions		

			COMMONWEALTH OF VIRGINIA DEPARTMENT OF TRANSPORTATION			
			Structure and brice division			
A	stimoted ouortit		ESTIMATED QUANTITIES. BRIDGE GEOMETRY. AND INDEX OF SHEETS			
	Itome of Revisions					
2	Toble of Reverisions	9-10-10				
No.	Description	Dote	Designed:	ALC.		Sheet No.
Revisions			(cherke:	Sfic.e. octooer 2009	283-67	2 of 68

TYPICAL END DIAPHRAGM TYPE C - SBL
Scole: $3 / /^{\prime \prime}=1-0 "$

TYPICAL END DIAPHRAGM
TYPE A - NBL

TYPICAL END DIAPHRAGM
TYPE B - SBL
Scole: $3 / 8^{\prime \prime}=1-0 "$

TYPICAL END DIAPHRAGM
TYPE B - NBL
Scole: $3 / 8^{\prime \prime}=1-0$

TYPICAL END DIAPHRAGM
TYPE $A-$ SBL
Scole: $3 / 8^{\prime \prime}=1-0 "$

TYPICAL END DIAPHRAGM
TYPE C - NBL

Notes:
ESO605 through Eso612 are not continuous through girder web.
See Sheet 12 for odcitionol detoils.
Steel diophrogms not shown.

Notes.

For girder elevotions, see sheet 15
For girder detoils, see sheet 16 .
3. Intermediote diophrogms sholl be placed perpendiculor to the girder
Distonce to diophrogms is given olong $\&$ of girders.

FRAMING PLAN

$\frac{\text { GIRDER ELEVATION - SPANS A \& D }}{\text { Not to scole }}$

$\frac{\text { GIRDER ELEVATION - SPANS B \& C }}{\text { Not to scale }}$

FLANGE CLIP AT ABUTMENTS
Notes:
The bottom flonge ond web ore oreos of tensile stress
for choroy v-notch impoct reauirements.
2. The girders shall be supported ot the ends ond auorter points during the leck costing operation. The supports
sholl be kept in ploce until the concrete hos ottoined o
3. Welding of structural steel shall be in occordonce with
voot Rooco \& Bridge Specificoctions. Section 407.04.
4. For Stiffener Detolis, see Sheet 16.
5. Continuity plate to be shop welded to girder ends ot al
pier locotions. See Sheet 13 for odditional detoiis.

DEAD LOAD DEFLECTIONS DIAGRAM

$\Delta \mathrm{c}=$ Deflection of girder from dead lood (e.g. concrete deck slob, bolsters, paropet and future
$\Delta s=$ Deflection of girder from its own weight including diophrogms, connectors etc. ot midspon.
$C=$ The required upword comber for girders ot midspon
Comber note: girders shall be cambered up cot midspon, computed deflection of girder from its

Spon	Girder	Girder Dimensions		Plote Dimension						Sheor Connector Spacing				
				Web \mathbb{R}				Flonges R						
		${ }^{\text {A }}$	BB	WA	wB	wc	w	R 1	R2	SA	SB	Sc	SD	SE
	675 to 615	$32^{1}-97 / 8^{\prime \prime}$	$31^{1}-44^{17} 8^{\prime \prime}$	32"	$26^{\prime \prime}$	$6^{6 \prime}$	${ }^{1}-4{ }^{\prime \prime}$	$34^{3 / \times 12^{2}}$	$34^{1 / \times 12}$	17	${ }^{9}$	${ }^{12}$ '-9"	1	$0^{\circ} \mathrm{O}-978{ }^{\text {a }}$
	GIN to G7N	$32^{\prime 2}-9 / 88^{\prime \prime}$	$31-47 / 8^{\prime \prime}$	$32^{\prime \prime}$	$26^{\prime \prime}$	$6^{\prime \prime}$	${ }^{1}-44^{\prime \prime}$	${ }^{3 / 4 \times 1} \times 12^{2 \prime}$	$34^{1 / \times 12}$	17	$9 "$	12^{-9-94}	1	$0^{\circ}-97 /{ }^{\prime \prime}$
	675 to 615	65'-11/1/6	$64^{\prime}-7 / 1 / 66^{\prime \prime}$	$32^{\prime \prime}$	$32^{\prime \prime}$	--	--	$1{ }^{3 / 8}{ }^{1 / \times 12} \times 1$	$34^{1 / \times 12}$	39	$9^{9 \prime}$	29 -3"	1	$0^{\circ}-11 / 1 / 6^{\prime \prime}$
в	GIN to G7N	65'-11/6"	$64^{-7 / 7 / 6 "}$	32"	32"	--	--	$138^{\prime \prime} \times 12^{\prime \prime}$	$3 / 4^{\prime \prime} \times 12^{\prime \prime}$	39	$9{ }^{9}$	29-3"	1	$0^{0}-111 / 66^{\prime \prime}$
c	675 to 615	65'-11/1/6	$64^{1}-7 / 1 / 6{ }^{\prime \prime}$	$3{ }^{3}$	$32^{\prime \prime}$	--	--	${ }^{3 / 8^{\prime} \times 1 \times 12}$	$3^{3 / 4} \times 12^{\prime \prime}$	39	${ }^{9 \prime}$	29'-3"	,	$0^{-111 / 1 / 6 "}$
	GIN to G7N	65-111/6"	64 $4^{-77 / 7 / 6 "}$	32"	32"	--	--	$13 /{ }^{1 / \times 122^{\prime \prime}}$	$34^{1 / \times 12}$	39	${ }^{9 \prime}$	29-3"	1	$0^{0}-111 / 6^{\prime \prime}$
D	675 to 615	$40^{\circ}-07 / 8^{\prime \prime}$	38'-77/8"	$32^{\prime \prime}$	$29^{\prime \prime}$	$3{ }^{3}$	$1^{1}-4{ }^{\prime \prime}$	$34^{\prime \prime} \times 12^{2 \prime}$	$34^{1 / \times 12}$	21	${ }^{9 \prime}$	$15^{\prime \prime 9} 9$	2	$2^{2}-078^{\prime \prime}$
-	GIN +o G7N	$40^{\circ}-07 / 8^{\prime \prime}$	38 ${ }^{1}$-7\% ${ }^{\prime \prime}$	32"	29"	$3{ }^{\prime \prime}$	$1^{1-4 "}$	$334^{\prime \prime} \times 12^{\prime \prime}$	$34^{1 / \times 12}$	21	${ }^{94}$	15 -9"	2	$2^{2}-078^{\prime \prime}$

Spon	Girder	Dead Load Deflection at a	$\begin{gathered} \text { Dead Load } \\ \text { Deflection } \\ \text { at b } \end{gathered}$	Δs	c
		$\Delta \mathrm{c}$	$\Delta \mathrm{c}$		
A	615 to 675	1/6"	1/6"	0	1/6"
	6 IN to CTN	/16"	/16"	0	1/6"
в	615 to 675	/6"	3/8/	5/6"	Y/8"
	GIN to G7N	\%/6"	3/88	5/6"	\%/8"
c	615 to 675	\%/6"	3/8"	5/6"	1/8"
	GIN to C7N	\%/6"	3/8/	5/6"	\%/8"
D	615 to 675	1/8"	1/6"	/16"	3/6"
	61 N to 67 N	1/8"	1/6"	1/6"	$3 / 66^{\circ}$

$\frac{\text { ABUTMENT ELEVATION }}{\text { Not to scole }}$

ABUTMENT

MASONRY PLATE DETAIL

Notes:

2. Plotes shall not be pointed on the surfoce in contact with the
3. Elastomeric bearings shall be moldecd os o single unit. Elostomeric

Existing bearings to be removed.
5. The existing concrete masonny pad shall be repaired with polymer
concrete ond onchor bolts reploced.
 $400{ }^{\circ} \mathrm{F}$.

 For TB< li". threaded studs shal be welded to the beveled plote
insteod of topping ond threociing the beveled olote to receive cop screvs
 ond it's lucotion necessory to remove portions of the existing
supuerstructure ond to instol the preconstucted composite units.
 overstress.

| 10.0 | 10.0 | 2.843 | 0.125 | $5 @ 0.375$ | $6 \& 0.1196$ | 70.0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

SECTION A
$\frac{\text { LAMINATED ELASTOMERIC BEARING }}{\text { Not to scole }}$

BEVELED PLATE DIMENSIONS

BEVELED PLATE DIMENSIONS																																						
BEARING ASSEMBLY				61					62					C3					兂					65					66					67				
						Beveled	plote		0	Beveled plote				D	Beveled plote				D	Beveled plote				0	Beveled plot				0	Beveled plote				0	eveled plote			
LOCA	tion	TYPE	A	0	$\llcorner\mathrm{L}$	wв	тв	Grode		LB	wв	тв	Grode		LB	wB	тB	Grode		LB	wв	тв	Grode		LB	wB	тв	Grode		$\stackrel{\text { LB }}{ }$	wB	тв	Grode		$\stackrel{\text { LB }}{ }$	wв	тв	Grode
SBL																																						
Abut.A	-	I	4.343	6.05	11.00	10.00	1.250	1.9\%	6.05	11.00	10.00	1.250	1.8\%	6.05	11.00	10.00	1.250	1.7\%	6.17	11.00	10.00	1.375	1.6\%	6.41	11.00	10.00	1.625	1.4\%	6.53	11.00	10.00	1.625	1.3\%	12.77	11.00	10.00	7.875	1.2\%
Pier I	ВАск	2	4.343	8.21	11.00	10.00	3.375	1.9\%	8.21	11.00	10.00	3.375	1.8\%	8.45	11.00	10.00	3.625	1.7\%	8.57	11.00	10.00	3.750	1.6\%	8.45	11.00	10.00	3.625	1.4\%	8.57	11.00	10.00	3.750	1.3\%	8.45	11.00	10.00	3.625	1.2\%
	AHD	2	4.343	7.95	11.00	10.00	3.125	1.7\%	7.94	11.00	10.00	3.125	1.6\%	8.19	11.00	10.00	3.375	1.5\%	8.18	11.00	10.00	3.375	1.4\%	8.19	11.00	10.00	3.375	1.3\%	8.18	11.00	10.00	3.375	1.2\%	8.07	11.00	10.00	3.250	1.1\%
Pier 2	Back	2	4.343	6.26	11.00	10.00	1.375	1.7\%	6.26	11.00	10.00	1.375	1.6\%	6.38	11.00	10.00	1.500	1.5\%	6.39	11.00	10.00	1.500	1.4\%	6.26	11.00	10.00	1.375	1.3\%	6.39	11.00	10.00	1.500	1.2\%	6.14	11.00	10.00	1.250	1.1\%
	AHD	2	4.343	6.50	11.00	10.00	1.625	1.4\%	6.51	11.00	10.00	1.625	1.3\%	6.63	11.00	10.00	1.750	1.2\%	6.63	11.00	10.00	1.750	1.1\%	6.51	11.00	10.00	1.625	1.0\%	6.63	11.00	10.00	1.750	0.9\%	6.38	11.00	10.00	1.500	0.8\%
Pier 3	BACK	2	4.343	7.94	11.00	10.00	3.125	1.4\%	7.95	11.00	10.00	3.125	1.3\%	8.07	11.00	10.00	3.250	1.2\%	8.07	11.00	10.00	3.250	1.1\%	8.18	11.00	10.00	3.375	1.0\%	8.07	11.00	10.00	3.250	0.9\%	7.95	11.00	10.00	3.125	0.8\%
	AHD	2	4.343	8.93	11.00	10.00	4.125	1.2\%	8.81	11.00	10.00	4.000	1.1\%	8.93	11.00	10.00	4.125	1.0\%	8.93	11.00	10.00	4.125	0.9\%	8.93	11.00	10.00	4.125	0.8\%	8.81	11.00	10.00	4.000	0.7\%	8.69	11.00	10.00	3.875	0.6\%
Abut.B		1	4.343	6.41	11.00	10.00	1.625	1.2\%	6.41	11.00	10.00	1.625	1.1\%	6.41	11.00	0.00	1.625	1.0\%	6.41	11.00	0.00	1.625	0.9\%	6.41	1.00	0.00	1.625	0.8\%	6.53	11.00	10.00	. 625	0.7\%	9.17	1.0	. 00	4.37	0.6\%

BEVELED PLATE DIMENSIONS																																						
BEARING ASSEmbLY				61					62					63					64					65					66					67				
						Bevele	plote		0	Beveled plote																												
	tion	TYPE	a	0	LB	wB	тв	Grode		LB	wв	тв	Crode		LB	wв	тв	Grode		LB	wB	тв	Grode		LB	wв	тв	Grode		LB	wB	тв	Crode		LB	wB	тв	Grode
NBL																																						
Abut.A	-	1	4.343	6.05	11.00	10.00	1.250	1.7\%	6.05	11.00	10.00	1.250	1.8\%	6.05	11.00	10.00	1.250	1.9\%	6.05	11.00	10.00	1.250	2.0\%	6.17	11.00	10.00	1.375	2.1\%	6.17	11.00	10.00	1.375	2.2\%	12.1	11.00	10.00	7.375	2.3
Pier 1	back	2	4.343	8.45	11.00	10.00	3.625	1.7\%	8.33	11.00	10.00	3.500	1.8\%	8.45	11.00	10.00	3.625	1.9\%	8.33	11.00	10.00	3.500	2.0\%	8.33	11.00	10.00	3.500	2.1\%	8.33	11.00	10.00	3.500	2.2\%	8.0	11.00	10.00	3.250	2.3\%
	AHD	2	4.343	8.06	11.00	10.00	3.250	1.5\%	8.07	11.00	10.00	3.250	1.6\%	8.18	11.00	10.00	3.375	1.6\%	8.07	11.00	10.00	3.250	1.7\%	8.07	11.00	10.00	3.250	1.7\%	8.18	11.00	10.00	3.375	1.6\%	7.94	11.00	10.00	3.125	1.5\%
Pier 2	BACK	2	4.343	6.39	11.00	10.00	1.500	1.5\%	6.38	11.00	10.00	1.500	1.6\%	6.38	11.00	10.00	1.500	1.6\%	6.39	11.00	10.00	1.500	1.7\%	6.39	11.00	10.00	1.500	1.7\%	6.38	11.00	10.00	1.500	1.6\%	6.14	11.00	10.00	1.250	1.5\%
	AHD	2	4.343	6.63	11.00	10.00	1.750	1.3\%	6.63	11.00	10.00	1.750	1.3\%	6.63	11.00	10.00	1.750	1.2\%	6.63	11.00	10.00	1.750	1.2\%	6.63	11.00	10.00	1.750	1.2\%	6.63	11.00	10.00	1.750	1.1\%	6.38	11.00	10.00	1.500	1.1\%
Pier 3	васк	2	4.343	8.07	11.00	10.00	3.250	1.3\%	8.06	11.00	10.00	3.250	1.3\%	8.06	11.00	10.00	3.250	1.2\%	8.07	11.00	10.00	3.250	1.2\%	8.18	11.00	10.00	3.375	1.2\%	8.18	11.00	10.00	3.375	1.1\%	7.82	11.00	10.00	3.000	. 1.
	AHD	2	4.343	8.93	11.00	10.00	4.125	1.1\%	8.93	11.00	10.00	4.125	1.0\%	8.93	11.00	10.00	4.125	1.0\%	8.93	11.00	10.00	4.125	1.0\%	8.93	11.00	10.00	4.125	1.0\%	8.93	11.00	10.00	4.125	0.9\%	8.69	11.00	10.00	3.875	0.9\%
Abut.B		1	4.343	6.41	11.00	10.00	1.625	1.1\%	6.29	11.00	10.00	1.500	1.0\%	6.53	11.00	10.00	1.625	1.0\%	6.41	11.00	10.00	1.625	1.0\%	6.41	11.00	10.00	1.625	1.0\%	6.41	11.00	10.00	1.625	0.9\%	12.77	11.00	10.00	7.875	0.9\%

All dimensions in toble ore in inches. Dimension $T B$ is given of centerline of bearing,

Once the Controctor has determined the equipment to be used in the
instollotion of the Pcu's, he will hove the option to cost the concrete
 If the controctor exercises this ooption, it will be his responsibility to revise the Sequence of Construction to occommodote this chonge
No odditional compensotion will be ollowed for the temporary borrile necessory to construct the medion borrier in the field.
2. The contractor is odvised that the existing girders in Span B and C
ore composite with the deck by means of chonnel sheor connectors. ore composite with the deck by meons of chonnel shear
The existing gircers in Spons A ond D ore non-composite.
3. For all other notes concerning the Construction Sequence and Grid
Deck Detoils, see Sheet 22 .

TEMPORARY MEDIAN BARRIER TRANSITION

Notes:
Notes:

The cost for the w-beam ond temporory and inclured in the lump sum bid for
Denotes portion of existing superstructure
to be removed.Denotes portion of new superstructure
to be instolled.

LEGEND

- Substructure repoir
- Crock to be repaired

1. For reconstruction and repoir notes, see Sheet 3 ,
2. Cost of $1 / 2{ }^{2}$ joint moterial to be considered incidental to

3. 20 saure y yord of concrete block slob slope protection
to be repaired

ELECTROCHEMICAL CHLORIDE EXTRACTION NOTES

1. The Contractor shall identify \& mark all delaminated \& spalled areas on the concrete surface 2. The contractor shall remove (per the special provisions) all delaminated concrete \& patch it with a VDOT approved material. The patch concrete shall be standard Portland Cement Concrete
with resistivitites 15,000 ohm-om or less. High resistivity additives such as letex, 1 silica fume, flu ash or with resistivities 15,000 ohm-om or less. High resistivity additives such as letex, silica fume, flu other simial r materials als.
Extraction (ECE) work.
2. Electrical continuity between all exposed rebars (during repairs) shall be measured by the Contractor
documented \& submitted to the Engineer for approval prior to patching the structure. 4. All discontinuous metals shall be made continuous, by the contractor, by bonding it to the existing rebar
All bonding shall be checked \& approved by the Engineer's Consultant prior to patching.
3. ECE contractor shall check continuity between reifforcements and metals (both exposed and embedded)
4. All metal drain pipes, embedded in bridge members, shall be made continuous with the reinforcement prior to ECE treatment.
5. All cracks $1 / 32^{" ~ o r ~ m o r e ~ s h a l l ~ b e ~ r e p a i r e d ~ w i t h ~ a n ~ a p p r o v e d ~ p r e s s u r e-i n j e c t e d ~ e p o x y ~ c r a c k ~ s e a l e r ~ p r i o r ~}$ to ECE treatiment. Areas of pier subject to spall or delaminition
any crack-sealing work. This work is not part of the ECE Work.
6. The pier shall be completely repaired \& all repair material cured for 28 days prior to ECE treatment. The Contractor shall perform half-cell potential survey to locate the two most anodic locations per zone. 10. The concrete surface shall be propared by prossure washing \&/or light sandblasting prior to spraving the
Cellulose fiber. The Cellulose fiber shall completely cover the anode \& shall be approxoximately 2 " thick Cellulose fiber. The Celluluse fiber shall completely cover
but at least 11 between the anode \& the concrete sufface.
7. The Cellulose fiber shall be kept wet at all times using a wetting system (irigiating at intervals to keep the electrolyte wet at all times). The ECE areas shall be wrapped tightly with plastic to prevent d drying of electro The plastic wrapping shall have at least $1 / 2^{2}$ width overlap.
8. The spacers between the anode $\&$ the concrete surface shall be about 11 thick. It shall be attached to
the concrete surface using long plastic anchors of sufficient length. The spacers shall be placed at every 4 feet or less.
9. Each individual anode mesh panel within a sub zone shall be made continuous to the next one, within that
subzone, by a t least two connections.
10. Anode in each sub zone shall be isolated from adjacent sub zones
11. The gap between zones shall not exceed $6^{\prime \prime}$
12. The gap between the sub zones shall not exceed $3^{3 "}$.
13. All bearing pads 6" or higher shall receive ECE on all sides of the bearing pac
14. The anode on the sides of the bearing pads shall be made continuous with the anode on top surface of
. Each zone shal have a separate junction box, unless noted otherwise on plan (affixed on the
structure as shown),
15. Steel anode shall be at least 6 " from any exposed metal.
16. All electrolyte supply lines and anchors (if any) shall be plastic
17. Each subzone shall have an electrolyte feed line.
18. Steel anode shall extend $1^{\prime}\left(11^{\prime \prime}\right)$ below grade or to existing concrete grade level where appropriate

4 Any existing metal conduits (for lighting) shall be made continuous with the rebar
25.Electrolyte flow shall be controlled in such a way that there is no apparent electrical short between the ECE anode and the rebarlexposed meta
26. All wires from the junction box to the rectifier shall be black \#4/4 SO \& shall be clearly labeled at both ends
27. All wiring from the junction box to the rectifier \& from the rectifier to the pole shall conform to all local \& other applicable code requirements.
28. All cables from the junction box too the anode subzones shall be red \#10AWG THHN (or larger as required) \&
all cables to the rebar shall be black $\# 6$ AWG THHN. ft there is only anode wire size shall be red $\# 6$ AWG $T H H N$.
29. There shall be at least two anode connections per subzone. Anode wires to each subzone shall be clearly labeled at the junction box.
30. There shall be at least two rebar connections per subzone. All wires from the junction box to the rebars
shall be clearly labeled at the junction box
32. No wire-splicing is allowed between the anode and the junction box or beetween the rebar and the
33. There shall be only one zone per rectifier circuit. Each circuit of the rectifier shall be capable of 40V, 100A Rectifiers shall be rate
and relative humidity.
34. The operating parameters (i.e. rectifier voltage, current and current to individual subzone) shall be recorded
two times a day until the e parameters a day untit the values stabiize. subsequently, it shall be recorded once a day. All operating perameters shall be submitted to the Engineer.Any Hroblems with current output shall be
identified and corrected by the contractor imediately.
35. Any disrrution to the ECE treatment shall be recorded by the Engineer's Consultant along with reaso
for such disuption. 36. At the start of the ECE process, the current density shall be kept between $1 \mathrm{~A} / \mathrm{m}^{2}$ to $2 \mathrm{~A} / \mathrm{m}^{2}$ but shall not exceed $4 \mathrm{AmA} / \mathrm{m}^{2}$ at any time during the ECE process. The contractor shall not operate at
current limit of 0.36 Afft ($4 \mathrm{~A} / \mathrm{m}^{\prime}$) for more than 2days during the entire treatment period.
37. ECE shall be performed until a total charge of 900 A - -r $/ \mathrm{m}^{2}$ is achieved. If the contractor is so able to achieve a total charge of 900 A -hrm ${ }^{2}$ in 60 days, , se shall inform the Engineer o obtain the approval of the Engineer rior to terminating the ECE E treatment. The Engineer's decision is final \& binding. 38. Contractor will be responsible for maintaining a safe zone around all work areas $\&$ that all public is
protected from the danger of high voltage/high current $E C E$ operation
39. Contractor shall be responsible for power \& electrolyte required for ECE. He shall obtain any license and/or responsible for removal of all such temporary connections after the completion of ECE treatment.
40. The ECE work shall be paid for at the contract tump sum price. This price shall include all Matriils, Labor
Tools, Equipment, Installation Data Collection Removal Disposal and all incilentals necessary to completo the project.
41. The contractor is responsible for the removal and proper disposal of cellulose and anode material. The removal shall start only after the Engineer approves the end of ECE treatment.
42. Two 2" diameter window (made of gluing a 2" diameter PVC pipe, $4^{\prime \prime}$ Iong) shall be installed in each ECE Zone. This window shall be installed prior to installing steel anode mesh.
43. All measurements are approximates. Exact measurements are to be verified on-site by contractor 44. ECE zoning measurements are calculated from top of structural element to 1 ' below grade level. 45. All excavation done at site for ECE treatment shall be returned to original appearance at end of treatment.
46. The ECE contractor is not allowed to combine ECE zones/subzones unless it is approved by the Engineer 47.The contractor shall coordinate all ICE and CP work with the Engineer's Consultant. The contractor
shall provide at least one week advance notice to the Engineer's Consultant.
9. The contractor is resposible for any paient and associated costs tor ECE treatment

\qquad

\qquad

 CE

ineer.46. The ECE contractor is not allowed to combine ECE zoness/subzones unless itis approved by the Engineer
47.The contractor shall coordinate all ECE and CP work with the Engineer's Consultant. The contractor

48. The contractor shall coordinate and schedule all ECE and CP related work in concent with the Engineer's
49. The contracial
Consultant.
50. Ater completing the ECE treatment. the contractor shall apply graffiti resistant coating per the special
provision, except at Hermitage Road.
51. After completing the ECE Treatment, the
provision, except at Hermitage Road.

 .

都

CATHODIC PROTECTION NOTES

1. The sacrificial CP system shall be applied within 12 weeks of the completion of ECE treatment.
2. Abrasive blasting shall not commence before concrete repairs are completed and patch materials are allowed to cure propery.
3. Surfaces shall be thoroughly cleaned (vacuum or dry air) within 15 minutes of the start of the thermal spray application. Any yil, grease, soil, water or o ther foroiein metter that may have deposited
on the surface after sufface preparation has beeen completed shall be removed befor the spray on
application. surace
4. Coating application shall only be performed when the concrete surface is clean and dry. Tests shall be eefformed prior to metelilizing to determine the presence of moisture in the concrete. If significant moistre is present, a pornal
concrete moisture levels.
5. For monitoring sitls, all metallic componenents or appurtenances such as drainpipes, conduits or bearing steel plates, shall be isolated from the anode and temporarily covered with suitable m mas.
which shall extend from the objects by at least one-half inch on the concrete surfaces.
6. Surfaces not intended to be metalized which are adiacent to, or in close proximitiy to the surface to be
metalized, shall be profectected during metalizing. The masked surfaces shall form straight horizontal and metaizizd, sha
vertical lines.
7. Anode connector plates shall be installed per this specification. The spray application of the sacrificial anode shall begin by metalizing the concrete area where the anode connector prates are to be installed Spray two passes of the anode coating, instal the connector plate, fasten the anode connector plates the concrete, clean the concrete surface, spray additional passes
specified thickness and proceed toward the surrounding concrete.
8. There Shall be at least two (2) anode connector plates per zone. At non-monitoring sites, each anode
connector plate shall be directly attached to the reinforcing steel L sing a threaded galvanized rod (STUD).
9. The anode shall not be sprayed when the concrete surface temperature is less than $41^{\circ} \mathrm{F}\left(5^{\circ} \mathrm{C}\right)$, unless with a torch prior to the thermal spray application. The enclosure temperatur and surfaces to be sprayed shall be at a minimum of $9^{\circ} \mathrm{F}\left(5^{\circ} \mathrm{C}\right.$) above dew point.
10. The metalizing shall extend one foot (1) beyond the line where the old and new concrete surfaces meet. 1. The coating should be applied in multiple passes and should overlap on each pass in a crosshatch patterm
before the first layer of material cools down. The contractor shall use a minimum of four (4) passes. Uniform before the first layer of material cools sown. The contractior shal
gun movement should be used to ensure a consistent thickness.
11. Metalized areas shall have uniform appearance, free of visible coating defects such as: cracking, burning blistering, uncoated areas and other similar defeccts that will affect the functioning of the coating.
12. The contractor shall achieve a final anode thickness of 12 to 1 6mils. Material usage logs shall be used to document instalation of the proper anode quantity. For confirmation of the material usage, the thickness of the
coating shall be measured at a minimum of five (5) Iocations per $100 \mathrm{~m}^{2}\left(9.3 m^{\prime}\right.$) using a reverse Eddy current thickness gage, such as the Defelsko Positector 6000 .
13. Areas of low thickness shall be repaired as follows (at no additional cost to the state): A. Clean the exxisting anode by lighty blasting the areas without exposing large aggregates B. Re-apply the sacincial anode coating using the procedures outined in this specification
14. Adhhesion strength between the anode coating and concrete substrate shall be measured with a Defelsko
Positest AT-C Pull-Off Adhesion Tester, orequal. Adhesion strength tests shal be performed between 24 and 7 2hours atter metalizing. A minimum of three (3) adhesion tests shall be performed per $1000 \mathrm{I}^{\prime}\left(93 m^{\prime}\right.$) of concrete surface. The average of the three tests shall be used for that location.
 adhesion strength value shall be verified prior to the start of the spraying operation. The contractor shall prepare, clean and spray three (3) horizontal and three (3) vertical two feet by two feet $\left(2^{\prime} \times 2^{2}\right.$) test areas in accordance with this special provision. The contractor shall remove and re-apply anode in all
that 5 popsi or it the coating shows cracking, blistering or other visible efefects.
15. If the anode coating fails in test area, the contractor shall remove all of the anode coating and reapply it.
16. Two (2) siver-siver chloride reference electrodes shall be installed during the concrete trage in each area designated as monitoring site.
17. The reference electrode shall be situated at the same depth as the rebar/pre-stressing steel.
18. An identification tag shall be affixed to the end of the cable indicating the reference
19. The reference electrode excavation shall be patthed with approved Portiand Cement
Grout or concrete with 5905 OHM-IN (15,000 OHM-CM) resistivity or less. The reference Grout or concrete with 5905 OHM-N (15,000 OHM-CM) resistivity or less. The reference
elecectrode shall be fully encopsulated within cementitious backill material. The backill material shall completely lil the exilacavation and no voids or separation shall exist between the reference
elecctrode and the bacfill concrete.
20. The connection of each ground wire to the reifforcing steel shall be made using pin brazing
or tack welding in accordance with manufacturers' instructions. The connection of any expos or rack welaing,
copper stranded accordance wires in the excavated a area shall be completelly coated with a 100% solid epoxy
21. The spray application of the sacrificial anode shall begin by metalizing the area(s) in which connector plate, fasten the anode connector platet to the concrete, clean the concrete surface, spray additional passes over the connector plate to a chieve specified thickness and proceed towar the surrounding concrete. If a short circuit is detected all instalation work shal stop until the short is identified and eliminated
22. The perimeter of the junction boxes and test boxes shall be caulked with GE-All Outtoor Weather Caulk material. The caulking shall achieve water tightness to shetter the anode plate connector, wire
shunts and other metals housed inside.
23. All cathoodic protection wires shall be identified in the junction boxesthest boxes using durable identification tags.
ad their grounds, without splices, the test box. All wiring shall be installed in PVC conduit
24. The contractor is responsible for any patent and associaed cosits of he CP system
25. After installing the CP anode, the contractor shall apply graffiti resistant coating per the special provision.

$\underset{\text { NTS. }}{\text { ABUTMENTA-PLAN }}$

q ROUTE I-95

I $=95$ MAINTENANCE OF TRAFFIC PLANS PHASE V, STAGES I \& II

= HERMITAGE RD。BOULEVARD \& BOULVEDARD RAMP BRIDGES

$I=95$ MAINTENANCE OF TRAFFIC PLANS
 PHASE V, STAGES I \& II SIGN DETAILS

NOTES:

- Drill additional holes so sign can be rotated
- Allstructural steel shall conform to ASTM A36.
- Support fits both 32 " and 42 " tall "F" barrier.
- Use concrete barrier sign support
measuring 9sq. fl. or less.
- Place support at connection between
- Do not use clipped

