

MASSACHUSETTS DEPARTMENT OF TRANSPORTATION **HIGHWAY DIVISION**

INDEX

DESCRIPTION

SHEET NO.

1		TITLE SHEET & INDEX
2		KEY PLAN AND PAVEMENT CORE LOCATIONS
3		PAVEMENT CORE DATA
4		ABBREVIATIONS
5		LEGEND AND GENERAL NOTES
6		TYPICAL SECTIONS
7	·	CONSTRUCTION DETAILS
8		CONSTRUCTION PLAN
9-10		PROFILES
11		GRADING AND CURB TIE PLAN
12		TEMPORARY PAVEMENT MARKING PLAN
13-29		TEMPORARY TRAFFIC CONTROL PLANS
30-31		LIGHTING PLANS
32-56		BRIDGE NO. M-12-027, INTERSTATE 93 OVER SALEM STREET EASTBOUND
57-60		CROSS SECTIONS

CONVENTIONAL SIGNS

COUNTY, CITY, OR TOWN BOUNDARY · · · · · · · · · ·	
COUNTY, CITY, OR TOWN SIDE LINE	
FENCE LINE	XXXXX
BASE LINE OR SURVEY LINE · · · · · · · · · · · · · · · · · · ·	<u>S36°04'20"W</u> 53.578
CULVERT	========
RETAINING WALL	
GUARD RAIL	<u> </u>
STONE WALL · · · · · · · · · · · · · · · · · ·	$\infty \infty $
TREE LINE	
POLE	\diamond
	PROPOSED SURFACE
	FILO SURFACE
	PRESENT COL
·	I

PRES. 90.7 PROP 90.91

10+20

P:\61131\127-61131-11001\CAD\SheetFiles\M-12-027_SALEM_EB\20110223_DWG_CEC_JFW_TITLE_SHEET_M-12-027.dwg 5/25/2011 10:34:14 AM

ELEVATIONS

CONSTRUCTION OF

INTERSTATE 93 SUPERSTRUCTURE REPLACEMENT OVER SALEM STREET (ROUTE 60) EASTBOUND BRIDGE NO. M-12-027 (3B6)

IN THE CITY OF

MEDFORD

LENGTH OF PROJECT = 387 FEET = 0.07 MILES

SCALE IN FEET

	I	MEDFO	RD	
1-93 (OVER	SALEM	STREET	EB

STATE	FED. AID PROJ. NO.	SHEET NO.	TOTAL SHEETS
MASS.	BRI-093-1 (524) STP 093-1	1	60
	PROJECT FILE NO.	606255	

TITLE SHEET & INDEX

THE 1988 STANDARD SPECIFICATIONS FOR HIGHWAYS AND BRIDGES; THE SPECIFICATIONS DATED FEBRUARY 25. 2010: THE STANDARD HE 2010 CONSTRUCTION STANDARDS; THE 2003 EDITION OF THE "MANUAL ON ESIGN GUIDE: THE 1996 CONSTR DETAILS (TRAFFIC SIGNS AND SUPPORTS ONLY), AS AMENDED; THE 1968 "STANDARD DRAWINGS FOR TRAFFIC SIGNALS AND HIGHWAY LIGHTING", AND THE LATEST EDITION OF THE AMERICAN STANDARD FOR NURSERY STOCK, AS AMENDED, WILL GOVERN.

DESIGN DESIGNATION

DESIGN SPEED ADT (2010) ADT (2030)

T (PEAK HOUR) T (AVERAGE DAY) DHV (2030) DDHV (2030) FUNCTIONAL CLASS

<u>I-93</u> 65 MPH 178,300 187,400 7% 50% 1% 3% 12,320 6,160

INTERSTATE

One Grant Street Framingham, MA 01701-9005 508.903.2000 www.tetratech.com

HIGHLAND AVE., 4TH FLOOR, NEEDHAM, MA 024 SHTS: 32-56 BRIDGE PLANS

Highway Division

RECOMMENDED FOR APPROVAL

	CHIEF ENGINEER	DATE
DEPARTMENT OF TRANSPORTATION FEDERAL HIGHWAY ADMINISTRATION	APPROVED	
APPROVED:		
DIVISION ADMINISTRATOR DATE	HIGHWAY ADMINISTRATOR	DATE

PAVEMENT CORE DATA

BRIDGE NUMBER	CORE ID	STATION	CORE LENGTH	LAYER	DEPTH RANGE (INCHES)	DESCRIPTION
				A	0-1	SURFACE COURSE - FINER AGGREGATE, GRAINS TYPICALLY ≤3/8" .
N. 40.000				В	1-3	SURFACE/INTERMEDIATE COURSE - FINE TO MID-SIZE AGGREGATE, GRAINS TYPICALLY ≤1/2".
NORTHBOUND	C1	56+10	15"	С	3-7	INTERMEDIATE COURSE - MID-SIZE AGGREGATE, GRAIN SIZE TYPICALLY ≤3/4", BREAK AT BOTTOM OF LAYER.
				D	7-13	BASE COURSE - COARSE AGGREGATE, GRAIN SIZE TYPICALLY ≤1 ", LARGER PERCENTAGE OF GRAVEL THAN C.
				E	13-15	GRAVEL SUB-BASE LAYER - COARSE ANGULAR GRAVEL ≤2 1/2", (RHYOLITE).
				Α	0-4	SURFACE COURSE - FINER AGGREGATE, GRAINS TYPICALLY ≤1/2" , BREAK AT BOTTOM OF LAYER.
M-12-039,	C2	50+10	15"	В	4-8	INTERMEDIATE COURSE - MID-SIZE AGGREGATE, GRAIN SIZE TYPICALLY ≤3/4", BREAK AT BOTTOM OF LAYER.
SOUTHBOUND				С	8-11	INTERMEDIATE COURSE - MID-SIZE AGGREGATE, GRAIN SIZE TYPICALLY ≤1/2".
				D	11-15	BASE COURSE - COARSE AGGREGATE, GRAIN SIZE TYPICALLY ≤1".
				Α	0-1	SURFACE COURSE - TOP FINER AGGREGATE, GRAINS TYPICALLY ≤3/8" .
				В	1-3	SURFACE/INTERMEDIATE COURSE - FINE TO MID-SIZE AGGREGATE, GRAINS TYPICALLY ≤1/2".
M-12-036.			4.01	С	3-7	INTERMEDIATE COURSE - MID-SIZE AGGREGATE, GRAIN SIZE TYPICALLY ≤1".
NORTHBOUND	C3	20+60	13"		7-8	SURFACE COURSE - TOP FINER AGGREGATE, GRAINS TYPICALLY ≤3/8".
				E	8-10	INTERMEDIATE COURSE - MID-SIZE AGGREGATE, GRAIN SIZE TYPICALLY ≤3/4".
				F	10-11	INTERMEDIATE COURSE - FINE TO MID-SIZE AGGREGATE, GRAINS TYPICALLY ≤1/2".
				G	11-13	GRAVEL SUB-BASE LAYER - CUARSE ANGULAR GRAVEL ≤2 1/2", (RHYOLITE).
				A	0-2	SURFACE COURSE - TOP FINER AGGREGATE: GRAINS TYPICALLY $\leq 3/4^{\circ}$.
M-12-036, SOUTHBOUND	C4	16+40	12"	В	2-5 5 0	SURFACE COURSE - TOP FINER AGGREGATE: GRAINS TYPICALLY \$3/4, GRAVEL CONTENT LESS THAN IN A.
					0.10	SURFACE COURSE - TOP FINER AGGREGATE LAYER: GRAINS TYPICALLY $\leq 3/8$.
					9-12	SUBEACE COURSE - COARSE AGGREGATE LATER. GRAIN SIZE ITPICALLTST.
				A 	2.6	SURFACE COURSE - TOP FINER AGGREGATE. GRAINS TYPICALLY $\leq 3/6$.
M-12-025,	C5	1/1+00	10"		6-8	SURFACE COURSE - TOP FINER AGGREGATE LAVER' CRAINS TYPICALLY \$3/4, GRAVEL CONTENT LESS THAN IN A.
NORTHBOUND	05	14+90	10		8 10	BASE COURSE - TOF FINER AGGREGATE LATER. GRAINS ITFICALLI 20/0 .
					NIM	SUB-BASE OBSERVED IN BOTTOM OF HOLE BUT NOT RECOVERED. COARSE GRAVEL
				Δ	0-5.5	SUBFACE COURSE - TOP FINER AGGREGATE: GRAINS TYPICALLY <3/4" BREAK AT 2 INCHES
M 12 025				B	5 5-6 5	SURFACE COURSE - TOP FINER AGGREGATE LAYER: GRAINS TYPICALLY <3/8"
SOUTHBOUND	C6	90+60	11"	C	6 5-11	BASE COURSE - COARSE AGGREGATE LAYER: GRAIN SIZE TYPICALLY ≤ 1 "
					NM	~3 INCHES OF SUB-BASE OBSERVED IN BOTTOM OF HOLE BUT NOT RECOVERED. COARSE GRAVEL
				Α	0-1.5	SURFACE COURSE - TOP FINER AGGREGATE LAYER: GRAINS TYPICALLY ≤3/8".
M-12-027				B	1.5-2.5	SURFACE/INTERMEDIATE COURSE - FINE TO MID-SIZE AGGREGATE LAYER: GRAINS TYPICALLY ≤1/2".
NORTHBOUND	C7	97+90	12"	С	2.5-7	BASE COURSE - COARSE AGGREGATE, GRAIN SIZE TYPICALLY ≤3/4".
				D	7-12	GRAVEL SUB-BASE LAYER - COARSE ANGULAR GRAVEL ≤2 1/2", (RHYOLITE).
				A	0-1	SURFACE COURSE - TOP FINER AGGREGATE, GRAINS TYPICALLY ≤1/2" , POROUS.
M-12-027.				B	1-6	SURFACE/INTERMEDIATE COURSE - FINE TO MID-SIZE AGGREGATE, GRAINS TYPICALLY ≤1/2".
SOUTHBOUND	C8	99+10	9"	C	6-9	BASE COURSE - COARSE AGGREGATE, GRAIN SIZE TYPICALLY ≤3/4".
					NM	~1 INCHES OF SUB-BASE OBSERVED IN BOTTOM OF HOLE BUT NOT RECOVERED, COARSE GRAVEL.
				A	0-2.5	SURFACE COURSE - TOP FINER AGGREGATE, GRAINS TYPICALLY ≤1/2" , POROUS.
M-12-028,	C9	100+90	11"	В	2.5-6	INTERMEDIATE COARSE - MID SIZE AGGREGATE, GRAIN SIZE TYPICALLY ≤3/4".
NORTHBOUND	03			С	6-9.5	BASE COARSE - COARSE AGGREGATE, GRAIN SIZE TYPICALLY ≤1/2".
				D	9.5-11	GRAVEL SUB-BASE LAYER - COARSE ANGULAR GRAVEL ≤2 1/2", (RHYOLITE).
M-12-028,	C10	104+20	9"	A	0-1	SURFACE COURSE - TOP FINER AGGREGATE, GRAINS TYPICALLY ≤1/2" , POROUS.
SOUTHBOUND			-	В	1-9	INTERMEDIATE COARSE - MID SIZE AGGREGATE, GRAIN SIZE TYPICALLY ≤3/4", BREAK AT 8", FLAT SURFACE.
M-12-029				Α	0-1	SURFACE COURSE - TOP FINER AGGREGATE, GRAINS TYPICALLY ≤1/2".
NORTHBOUND	C11	110+50	9"	B	1-9	INTERMEDIATE COARSE - MID SIZE AGGREGATE, GRAIN SIZE TYPICALLY ≤3/4".
					NM	~2 INCHES OF SUB-BASE OBSERVED IN BOTTOM OF HOLE BUT NOT RECOVERED, COARSE GRAVEL.
				A	0-1	SURFACE COURSE - TOP FINER AGGREGATE, GRAINS TYPICALLY ≤1/2", POROUS.
				В	1-4	INTERMEDIATE COARSE - MID-SIZE AGGREGATE, GRAINS TYPICALLY ≤3/4".
M-12-029,	C12	113+10	11"	<u>с</u>	4-6.5	BASE COARSE - COARSE AGGREGATE, GRAIN SIZE TYPICALLY ≤1".
SCOTIBCOND					6.5-8	SURFACE COURSE - TOP FINER AGGREGATE, GRAINS TYPICALLY ≤3/8", POROUS.
					8-10	INTERMEDIATE COARSE - MID-SIZE AGGREGATE, GRAINS TYPICALLY \$3/8, GRAVEL CONTENT LESS THAN D.
				F	0.1	SUBEACE COURSE TODEINED ACCRECATE CRAINS TYDICALLY <2/8"
				A	U-I 1 2	
M-12-030, NORTHBOUND	C13	122+50	10"		י-ט ג_10	BASE COARSE - COARSE AGGREGATE GRAIN SIZE TVDICALLY < $3/4$ "
				U	 NIM	
+				Δ	0_1	SURFACE COURSE - TOP FINER AGGREGATE GRAINS TYPICALLY <1/2" POROLIS
					1-3	INTERMEDIATE COARSE - MID-SIZE AGGREGATE GRAIN SIZE $\leq 1/2$ "
				с. С	3-5	INTERMEDIATE COARSE - MID-SIZE AGGREGATE GRAIN SIZE $\leq 1/2$ " MORE GRAVEL THAN IN R
M-12-030,	C14	126+40	12"	ייייי ח	5-7	BASE COARSE - COARSE AGGREGATE. GRAIN SIZE TYPICALLY $\leq 3/4$ "
SOUTHBOUND	<u> </u>			E	7-8.5	INTERMEDIATE COARSE - MID-SIZE AGGREGATE. GRAIN SIZE ≤1/2".
				 F	8.5-10	BASE COARSE - COARSE AGGREGATE, GRAIN SIZE TYPICALLY ≤3/4".
				G	10-12	GRAVEL SUB-BASE LAYER - COARSE ANGULAR GRAVEL ≤2 1/2". (RHYOLITE).
L		1	I	_		

MEDFORD

1-93 OVER SALEW STREET ED						
STATE	FED. AID PROJ. NO.	SHEET NO.	TOTA SHEET			
MASS.	BRI-093-1 (524) STP 093-1	3	60			
	PROJECT FILE NO.	606255				

PAVEMENT CORE DATA

AADT	ANNUAL AVERAGE DAILY TRAFFIC
AASHTO	AMERICAN ASSOCIATION OF HIGHWAY AND TRANSPORTATION OFFICIALS
ABAN	
ABUT	ABUTMENT ASPHALT COATED CORRUGATED METAL PIPE
ADJ	ADJUST
ADT	AVERAGE DAILY TRAFFIC
ALM	
AL I ANSI	ALTERNATE, ALTERNATIVE AMERICAN NATIONAL STANDARDS INSTITUTE
APPR	APPROACH
APPROX	APPROXIMATE
ASTM	AMERICAN SOCIETY FOR TESTING AND MATERIALS
AVL	AVENOL
BAR	BARRIER
B&B	BALLED AND BURLAPPED
BD BIT	BOUND BITUMINOUS
BL OR B	BASELINE
BLDG	BUILDING
BM	BENCH MARK, BEAM
BOD	BY UTHERS BOTTOM OF DITCH
BOT	BOTTOM
BR	BRIDGE
BRG	BEARING
BRK	BRICK
С	CUT
CB	CATCH BASIN
CBCI	CATCH BASIN WITH CURB INLET
CCM	CEMENT CONCRETE MASONRY
CEM	
CFS	CUBIC FEET PER SECOND
CI	CAST IRON, CURB INLET
CIP	
	CAST IN PLACE CONCRETE CAST IRON PIPE (CEMENT LINED)
CL	CENTERLINE
CLF	CHAIN LINK FENCE
CLL	
CLP	CEMENT LINED PIPE CLEAR CLEARANCE
CMB	CONCRETE MEDIAN BARRIER
CMP	CORRUGATED METAL PIPE
CO	CLEANOUT, COUNTRY
COL	COLUMN
COND	CONCRETE
CONST	CONSTRUCT, CONSTRUCTION
CONT	CONTINUE(D), CONTINUATION
CS	
CSMH	CONSTRUCTION JOINT COMBINED SEWER MANHOLE
CTR	CENTER
CULV	CULVERT
CY	CUBIC YARD
Δ	DELTA ANGLE (CENTRAL ANGLE OF HORIZONTAL CURVE)
D	DIRECTIONAL PERCENTAGE OF DESIGN HOURLY VOLUME
DIA	DIAMETER
DA	
	DIRECTIONAL DESIGN HOURLY VOLUME
DET	DETAIL
DHV	DESIGN HOURLY VOLUME
DI	DROP INLET
	DIMENSION DUCTILE IRON RIPE (LINED)
DR (L)	DRIVE, DRAIN
E	EAST, EXTERNAL
EA	EACH ELECTRICAL BOX EASTROUND
EHH	ELECTRIC HANDHOLE
ELEV	ELEVATION
ELEC	ELECTRICAL
ЕМВ Емн	EMBANKMENT ELECTRIC MANHOLE
ENT	ENTRANCE
EOP	EDGE OF PAVEMENT
EQ	EQUAL
EST	ESTIMATE
EXU FXIST	EXCAVATION
EXJT	EXPANSION JOINT
EXPWY	EXPRESSWAY
EXPWY EXP	EXPRESSWAY EXPANSION EXTEDIOR EXTERNAL
EXPWY EXP EXT	EXPRESSWAY EXPANSION EXTERIOR, EXTERNAL

FA

F&C

FDN FED

F&G

FH FHWA

FIN

FL

FLR

FS

FΤ

G

GAL

FLDSTN

FILL FIRE ALARM, FEDERAL AID FRAME AND COVER
FOUNDATION FEDERAL
FRAME AND GRATE FIRE HYDRANT FEDERAL HIGHWAY ADMINISTRATION
FINISH FLOW LINE
FIELDSTONE FLOOR FIRE SIGNAL
FOOT, FEET
GAS GALLON
GARAGE GROUND
GUARD RAIL GAS GATE
GALVANIZED IRON PIPE GAS METER
GRANITE GRAVEL
GAS VALVE HEADWALL
HYDRAULIC GRADE LINE HANDHOLE
HOT MIX ASPHALT HOUSE HORIZONTAL
HIGH OCCUPANCY VEHICLE HIGH POINT
HIGH EARLY STRENGTH HIGH SERVICE WATER HIGHWAY
HIGHWAY GUARD HYDRANT
INCH INVERT
IRON PIPE IRON
JUNCTION
RATE OF VERTICAL CURVATURE, RATIO OF DESIGN HOURLY VOLUME TO AVERAGE DAILY TRAFFIC
LENGTH OF CURVE LATERAL
LEACHING BASIN POUND(S)
LINEAR FEET LOW POINT, LIGHT POLE
LOW SERVICE WATER LEFT
MUCK EXCAVATION METER
MASSACHUSETTS MAXIMUM
MAILBOX MASSACHUSETTS BAY TRANSPORTATION AUTHORITY METROPOLITAN DISTRICT COMMISSION
MASSACHUSETTS HIGHWAY BOUND MASSACHUSETTS HIGHWAY DEPARTMENT MEAN HIGH WATER
MINIMUM MISCELLANEOUS
MEAN LOW WATER MILLIMETER MODIFIED
MILES PER HOUR MEAN SEA LEVEL
MASSACHUSETTS TURNPIKE AUTHORITY MANUAL ON UNIFORM TRAFFIC CONTROL DEVICES MASSACHUSETTS WATER RESOURCES AUTHORITY
NOT AFFLICADLE NORTH AMERICAN DATUM NORTH AMERICAN VERTICAL DATUM
NORTHBOUND NORMAL CROWN
NEW ENGLAND TELEPHONE NATIONAL GEODETIC VERTICAL DATUM

NOT IN CONTRACT NUMBER NOT TO SCALE OPEN GRADED FRICTION COUR **OBSERVATION WELL** PULL BOX POINT OF CURVATURE POINT OF COMPOUND CURVAT PROFILE GRADE LINE POINT OF INTERSECTION PARKING PROPERTY LINE PARKING METER POINT ON CURVE POINT ON TANGENT POINT OF REVERSE CURVATUR PROJECT PROPOSED PLANTABLE SOIL BORROW POUNDS PER SQUARE INCH POINT OF TANGENCY, POINT POINT OF VERTICAL CURVATUR POINT OF VERTICAL INTERSEC PAVEMENT POINT OF VERTICAL TANGENCY PAVED WATERWAY QUANTITY RADIUS, ROCK EXCAVATION RAILING RADIUS REINFORCED CONCRETE REINFORCED CONCRETE BOX REINFORCED CONCRETE PIPE ROAD REMOVE AND DISCARD ROADWAY REFLECTORIZED REINFORCE, REINFORCING RELOCATE(D), RELOCATION REMOVE REMODEL REQUIRED **RETAIN, RETAINING** RETAINING WALL **REVISION, REVISED** RIGHT-OF-WAY RAILROAD REMOVE AND RESET RAILROAD SIGNAL REMOVE AND STACK RIGHT ROUTE SOUTH, SLOPE, SIGN SANITARY STONE BOUND, SPECIAL BORR STORM DRAIN, SUBDRAIN STORM DRAINAGE MANHOLE SUPERELEVATION SECTION SQUARE FEET SHEET SHOULDER STATE HIGHWAY LAYOUT LINE STATE HIGHWAY LAYOUT SKEW STOP LINE, SURVEY LINE SPECIFICATION(S) SANITARY SEWER STOPPING SIGHT DISTANCE SANITARY SEWER MANHOLE STREET STATION STANDARD STEAM MANHOLE STRUCTURE, STRUCTURAL STORY SURFACE, SURFACING SIDEWALK SQUARE YARD PERCENTAGE OF TRUCKS, TON TANGENT TRAFFIC CONTROL BOX TELEPHONE TEMPORARY TELEPHONE MANHOLE

NIC

NO

NTS

OGFC

OW

PΒ

PC

PCC

PGL

PKG

ΡM

POC

POT

PRC

PROJ

PROP

PSB

PSI

ΡT

PVC

PVI

PVMT

PWW

PVT

QTY

RAIL

RAD RC

RCB

RCP

R&D

RDWY

REFL

REINF

RELOC

REMOD

RET WALL

REQD

RET

REV

ROW

R&R

R&S

RTE

SAN

SB

SD

SE

SEC

SF

SH

SHLD

SHLL

SK

SL

SS

ST

STA

STD

STR

STY

SW

SY

T TAN

TCB

TEL

TEMP

TOPO

TOPOGRAPHY

TMH

SURF

STMH

SSD

SSMH

SHLO

SPEC(S)

SDMH

RR

RS

RT

S

REM

RD

R

PL OR PP

ΡI

MEDFORD I-93 OVER SALEM STREET EB

STATE FED. AID PROJ. NO. SHEET NO. SHEETS

BRI-093-1 (524) STP 093-1 PROJECT FILE NO. 606

MASS.

 NO.
 SHEETS

 4
 60

 606255

ABBREVIATIONS

	ТР	
RSE	TRANS	TRANSITION
	TRWY	TRAVELED WAY
	TS	TRAFFIC SIGNAL
	TSC	TRAFFIC SIGNAL CONDUIT
TURE	TV	
	IIF	TTFICAL
	UD	UNDERDRAIN OR SUBDRAIN
	UP	UTILITY POLE
	USGS	U.S. GEOLOGICAL SURVEY
	UTIL	UTILITIES
RE	V	
	VAR	VARIES, VARIABLE
	VC	VERTICAL CURVE
	VCP	VITRIFIED CLAY PIPE
	VERT	VERTICAL
RE	\\/	
TION	WB	WEST
Y	WCR	WHEELCHAIR RAMP
	WD	WOOD
	WDTH	WIDTH
	WE	WATER ELEVATION
	WG	
		WROUGHT IRON PIPE WATER METER WATER MAIN
	WMH	WATER MANHOI F
	WV	WATER VALVE
CULVERT		
	X-SECT	CROSS-SECTION
	VD	VADD
	YR	TARD VEAR
	тр	
	<u></u>	
	R	STEADY CIRCULAR RED
	R Y	STEADY CIRCULAR RED STEADY CIRCULAR YELLOW
	R Y G	STEADY CIRCULAR RED STEADY CIRCULAR YELLOW STEADY CIRCULAR GREEN
	R Y G FR	STEADY CIRCULAR RED STEADY CIRCULAR YELLOW STEADY CIRCULAR GREEN FLASHING CIRCULAR RED
	R Y G FR FY RIA	STEADY CIRCULAR RED STEADY CIRCULAR YELLOW STEADY CIRCULAR GREEN FLASHING CIRCULAR RED FLASHING CIRCULAR YELLOW STEADY RED LEET ARROW
	R Y G FR FY RLA YLA	STEADY CIRCULAR RED STEADY CIRCULAR YELLOW STEADY CIRCULAR GREEN FLASHING CIRCULAR RED FLASHING CIRCULAR YELLOW STEADY RED LEFT ARROW STEADY YELLOW LEFT ARROW
	R Y G FR FY RLA YLA GLA	STEADY CIRCULAR RED STEADY CIRCULAR YELLOW STEADY CIRCULAR GREEN FLASHING CIRCULAR RED FLASHING CIRCULAR YELLOW STEADY RED LEFT ARROW STEADY YELLOW LEFT ARROW
	R Y G FR FY RLA YLA GLA RRA	STEADY CIRCULAR RED STEADY CIRCULAR YELLOW STEADY CIRCULAR GREEN FLASHING CIRCULAR RED FLASHING CIRCULAR YELLOW STEADY RED LEFT ARROW STEADY YELLOW LEFT ARROW STEADY GREEN LEFT ARROW
	R Y G FR FY RLA YLA GLA RRA YRA	STEADY CIRCULAR RED STEADY CIRCULAR YELLOW STEADY CIRCULAR GREEN FLASHING CIRCULAR RED FLASHING CIRCULAR YELLOW STEADY RED LEFT ARROW STEADY YELLOW LEFT ARROW STEADY GREEN LEFT ARROW STEADY RED RIGHT ARROW
	R Y G FR FY RLA YLA GLA RRA YRA GRA W	STEADY CIRCULAR RED STEADY CIRCULAR YELLOW STEADY CIRCULAR GREEN FLASHING CIRCULAR RED FLASHING CIRCULAR YELLOW STEADY RED LEFT ARROW STEADY YELLOW LEFT ARROW STEADY GREEN LEFT ARROW STEADY RED RIGHT ARROW STEADY YELLOW RIGHT ARROW STEADY GREEN RIGHT ARROW
	R Y G FR FY RLA YLA GLA RRA YRA GRA W FDW	STEADY CIRCULAR RED STEADY CIRCULAR YELLOW STEADY CIRCULAR GREEN FLASHING CIRCULAR RED FLASHING CIRCULAR YELLOW STEADY RED LEFT ARROW STEADY YELLOW LEFT ARROW STEADY GREEN LEFT ARROW STEADY RED RIGHT ARROW STEADY YELLOW RIGHT ARROW STEADY GREEN RIGHT ARROW STEADY WALK FLASHING DON'T WALK
	R Y G FR FY RLA YLA GLA RRA YRA GRA W FDW DW	STEADY CIRCULAR RED STEADY CIRCULAR YELLOW STEADY CIRCULAR GREEN FLASHING CIRCULAR RED FLASHING CIRCULAR YELLOW STEADY RED LEFT ARROW STEADY YELLOW LEFT ARROW STEADY GREEN LEFT ARROW STEADY RED RIGHT ARROW STEADY YELLOW RIGHT ARROW STEADY GREEN RIGHT ARROW STEADY GREEN RIGHT ARROW STEADY WALK FLASHING DON'T WALK STEADY DON'T WALK
	R Y G FR FY RLA YLA GLA RRA YRA GRA W FDW DW ØA	STEADY CIRCULAR RED STEADY CIRCULAR YELLOW STEADY CIRCULAR GREEN FLASHING CIRCULAR RED FLASHING CIRCULAR YELLOW STEADY RED LEFT ARROW STEADY YELLOW LEFT ARROW STEADY GREEN LEFT ARROW STEADY RED RIGHT ARROW STEADY YELLOW RIGHT ARROW STEADY GREEN RIGHT ARROW STEADY GREEN RIGHT ARROW STEADY WALK FLASHING DON'T WALK STEADY DON'T WALK TRAFFIC SIGNAL PHASE
ROW, SOUTHBOUND	R Y G FR FY RLA YLA GLA RRA YRA GRA W FDW DW ØA BWLL	STEADY CIRCULAR RED STEADY CIRCULAR YELLOW STEADY CIRCULAR GREEN FLASHING CIRCULAR GREEN FLASHING CIRCULAR RED FLASHING CIRCULAR YELLOW STEADY RED LEFT ARROW STEADY YELLOW LEFT ARROW STEADY GREEN LEFT ARROW STEADY GREEN LEFT ARROW STEADY YELLOW RIGHT ARROW STEADY YELLOW RIGHT ARROW STEADY GREEN RIGHT ARROW STEADY WALK FLASHING DON'T WALK STEADY DON'T WALK TRAFFIC SIGNAL PHASE 6 IN BROKEN WHITE LANE LINE
ROW, SOUTHBOUND	R Y G FR FY RLA YLA GLA RRA YRA GRA W FDW DW ØA BWLL	STEADY CIRCULAR RED STEADY CIRCULAR YELLOW STEADY CIRCULAR GREEN FLASHING CIRCULAR GREEN FLASHING CIRCULAR YELLOW STEADY RED LEFT ARROW STEADY YELLOW LEFT ARROW STEADY GREEN LEFT ARROW STEADY GREEN LEFT ARROW STEADY RED RIGHT ARROW STEADY YELLOW RIGHT ARROW STEADY GREEN RIGHT ARROW STEADY GREEN RIGHT ARROW STEADY WALK FLASHING DON'T WALK STEADY DON'T WALK TRAFFIC SIGNAL PHASE 6 IN BROKEN WHITE LANE LINE (10 FT LENGTH, 30 FT GAP)
ROW, SOUTHBOUND	R Y G FR FY RLA YLA GLA RRA YRA GRA W FDW DW ØA BWLL DWL	STEADY CIRCULAR RED STEADY CIRCULAR YELLOW STEADY CIRCULAR GREEN FLASHING CIRCULAR GREEN FLASHING CIRCULAR RED FLASHING CIRCULAR YELLOW STEADY RED LEFT ARROW STEADY YELLOW LEFT ARROW STEADY GREEN LEFT ARROW STEADY GREEN LEFT ARROW STEADY GREEN RIGHT ARROW STEADY YELLOW RIGHT ARROW STEADY GREEN RIGHT ARROW STEADY GREEN RIGHT ARROW STEADY WALK FLASHING DON'T WALK STEADY DON'T WALK TRAFFIC SIGNAL PHASE 6 IN BROKEN WHITE LANE LINE (10 FT LENGTH, 30 FT GAP) DOTTED WHITE LINE (3 ET LENGTH 9 ET GAP)
ROW, SOUTHBOUND	R Y G FR FY RLA YLA GLA RRA YRA GRA W FDW DW ØA BWLL DWL DYCL	STEADY CIRCULAR RED STEADY CIRCULAR YELLOW STEADY CIRCULAR GREEN FLASHING CIRCULAR GREEN FLASHING CIRCULAR RED FLASHING CIRCULAR YELLOW STEADY RED LEFT ARROW STEADY YELLOW LEFT ARROW STEADY GREEN LEFT ARROW STEADY GREEN LEFT ARROW STEADY RED RIGHT ARROW STEADY YELLOW RIGHT ARROW STEADY GREEN RIGHT ARROW STEADY GREEN RIGHT ARROW STEADY WALK FLASHING DON'T WALK STEADY DON'T WALK TRAFFIC SIGNAL PHASE 6 IN BROKEN WHITE LANE LINE (10 FT LENGTH, 30 FT GAP) DOTTED WHITE LINE (3 FT LENGTH, 9 FT GAP) DOUBLE YELLOW CENTER LINE
ROW, SOUTHBOUND	R Y G FR FY RLA YLA GLA RRA YRA GRA W FDW DW ØA BWLL DWL DYCL DYL	STEADY CIRCULAR RED STEADY CIRCULAR YELLOW STEADY CIRCULAR GREEN FLASHING CIRCULAR GREEN FLASHING CIRCULAR YELLOW STEADY RED LEFT ARROW STEADY YELLOW LEFT ARROW STEADY GREEN LEFT ARROW STEADY GREEN LEFT ARROW STEADY GREEN RIGHT ARROW STEADY YELLOW RIGHT ARROW STEADY GREEN RIGHT ARROW STEADY GREEN RIGHT ARROW STEADY WALK FLASHING DON'T WALK STEADY WALK TRAFFIC SIGNAL PHASE 6 IN BROKEN WHITE LANE LINE (10 FT LENGTH, 30 FT GAP) DOTTED WHITE LINE (3 FT LENGTH, 9 FT GAP) DOUBLE YELLOW CENTER LINE DOTTED YELLOW LINE
ROW, SOUTHBOUND	R Y G FR FY RLA YLA GLA RRA YRA GRA W FDW DW ØA BWLL DWL DYCL DYL	STEADY CIRCULAR RED STEADY CIRCULAR YELLOW STEADY CIRCULAR GREEN FLASHING CIRCULAR GREEN FLASHING CIRCULAR RED FLASHING CIRCULAR YELLOW STEADY RED LEFT ARROW STEADY YELLOW LEFT ARROW STEADY GREEN LEFT ARROW STEADY GREEN LEFT ARROW STEADY GREEN LEFT ARROW STEADY YELLOW RIGHT ARROW STEADY YELLOW RIGHT ARROW STEADY GREEN RIGHT ARROW STEADY GREEN RIGHT ARROW STEADY WALK FLASHING DON'T WALK STEADY DON'T WALK TRAFFIC SIGNAL PHASE 6 IN BROKEN WHITE LANE LINE (10 FT LENGTH, 30 FT GAP) DOTTED WHITE LINE (3 FT LENGTH, 9 FT GAP) DOUBLE YELLOW CENTER LINE DOTTED YELLOW LINE (2 FT LENGTH, 4 FT GAP)
ROW, SOUTHBOUND	R Y G FR FY RLA YLA GLA RRA YRA GRA W FDW DW ØA BWLL DWL DVL DYCL DYL SWCHL	STEADY CIRCULAR RED STEADY CIRCULAR YELLOW STEADY CIRCULAR GREEN FLASHING CIRCULAR GREEN FLASHING CIRCULAR RED FLASHING CIRCULAR YELLOW STEADY RED LEFT ARROW STEADY YELLOW LEFT ARROW STEADY GREEN LEFT ARROW STEADY GREEN LEFT ARROW STEADY GREEN RIGHT ARROW STEADY YELLOW RIGHT ARROW STEADY GREEN RIGHT ARROW STEADY GREEN RIGHT ARROW STEADY WALK FLASHING DON'T WALK STEADY WALK TRAFFIC SIGNAL PHASE 6 IN BROKEN WHITE LANE LINE (10 FT LENGTH, 30 FT GAP) DOTTED WHITE LINE (3 FT LENGTH, 9 FT GAP) DOUBLE YELLOW CENTER LINE DOTTED YELLOW LINE (2 FT LENGTH, 4 FT GAP) 8 IN SOLID WHITE CHANNELIZING LINE
ROW, SOUTHBOUND	R Y G FR FY RLA YLA GLA RRA YRA GRA W FDW DW ØA BWLL DWL DYCL DYL SWCHL SWCHL SWEL	STEADY CIRCULAR RED STEADY CIRCULAR YELLOW STEADY CIRCULAR GREEN FLASHING CIRCULAR GREEN FLASHING CIRCULAR RED FLASHING CIRCULAR YELLOW STEADY RED LEFT ARROW STEADY RED LEFT ARROW STEADY YELLOW LEFT ARROW STEADY GREEN LEFT ARROW STEADY GREEN LEFT ARROW STEADY GREEN RIGHT ARROW STEADY YELLOW RIGHT ARROW STEADY GREEN RIGHT ARROW STEADY WALK FLASHING DON'T WALK STEADY WALK FLASHING DON'T WALK TRAFFIC SIGNAL PHASE 6 IN BROKEN WHITE LANE LINE (10 FT LENGTH, 30 FT GAP) DOTTED WHITE LINE (3 FT LENGTH, 9 FT GAP) DOUBLE YELLOW CENTER LINE DOTTED YELLOW LINE (2 FT LENGTH, 4 FT GAP) 8 IN SOLID WHITE CHANNELIZING LINE 6 IN SOLID WHITE EDGE LINE
ROW, SOUTHBOUND	R Y G FR FY RLA YLA GLA RRA YRA GRA W FDW DW ØA BWLL DWL DYCL DYL SWCHL SWCHL SWCH SWCH SWCH SWCH	STEADY CIRCULAR RED STEADY CIRCULAR YELLOW STEADY CIRCULAR GREEN FLASHING CIRCULAR GREEN FLASHING CIRCULAR RED FLASHING CIRCULAR YELLOW STEADY RED LEFT ARROW STEADY YELLOW LEFT ARROW STEADY GREEN LEFT ARROW STEADY GREEN LEFT ARROW STEADY GREEN RIGHT ARROW STEADY YELLOW RIGHT ARROW STEADY GREEN RIGHT ARROW STEADY GREEN RIGHT ARROW STEADY WALK FLASHING DON'T WALK STEADY WALK FLASHING DON'T WALK STEADY DON'T WALK TRAFFIC SIGNAL PHASE 6 IN BROKEN WHITE LANE LINE (10 FT LENGTH, 30 FT GAP) DOTTED WHITE LINE (3 FT LENGTH, 9 FT GAP) DOUBLE YELLOW CENTER LINE DOTTED YELLOW LINE (2 FT LENGTH, 4 FT GAP) 8 IN SOLID WHITE CHANNELIZING LINE 6 IN SOLID WHITE GORE LINE 12 IN SOLID WHITE GORE LINE
ROW, SOUTHBOUND	R Y G FR FY RLA YLA GLA RRA YRA GRA W FDW DW ØA BWLL DWL DWL DYCL DYL SWCHL SWCHL SWCHL SWCHL SWCHL SWGL SWLL SYFL	STEADY CIRCULAR RED STEADY CIRCULAR YELLOW STEADY CIRCULAR GREEN FLASHING CIRCULAR RED FLASHING CIRCULAR YELLOW STEADY RED LEFT ARROW STEADY YELLOW LEFT ARROW STEADY GREEN LEFT ARROW STEADY GREEN LEFT ARROW STEADY GREEN RIGHT ARROW STEADY YELLOW RIGHT ARROW STEADY GREEN RIGHT ARROW STEADY GREEN RIGHT ARROW STEADY WALK FLASHING DON'T WALK STEADY DON'T WALK STEADY DON'T WALK TRAFFIC SIGNAL PHASE 6 IN BROKEN WHITE LANE LINE (10 FT LENGTH, 30 FT GAP) DOTTED WHITE LINE (3 FT LENGTH, 9 FT GAP) DOUBLE YELLOW CENTER LINE DOTTED YELLOW LINE (2 FT LENGTH, 4 FT GAP) 8 IN SOLID WHITE CHANNELIZING LINE 6 IN SOLID WHITE GORE LINE SOLID WHITE LANE LINE
ROW, SOUTHBOUND	R Y G FR FY RLA YLA GLA RRA YLA GLA RRA YRA GRA W FDW DW ØA BWLL DWL DYCL DYL SWCHL SWEL SWEL SWEL SWEL SWEL SWEL SWLL SYEL WTL	STEADY CIRCULAR RED STEADY CIRCULAR YELLOW STEADY CIRCULAR GREEN FLASHING CIRCULAR RED FLASHING CIRCULAR YELLOW STEADY RED LEFT ARROW STEADY YELLOW LEFT ARROW STEADY GREEN LEFT ARROW STEADY GREEN LEFT ARROW STEADY GREEN RIGHT ARROW STEADY YELLOW RIGHT ARROW STEADY GREEN RIGHT ARROW STEADY GREEN RIGHT ARROW STEADY WALK FLASHING DON'T WALK STEADY DON'T WALK TRAFFIC SIGNAL PHASE 6 IN BROKEN WHITE LANE LINE (10 FT LENGTH, 30 FT GAP) DOTTED WHITE LINE (3 FT LENGTH, 9 FT GAP) DOUBLE YELLOW CENTER LINE DOTTED YELLOW LINE (2 FT LENGTH, 4 FT GAP) 8 IN SOLID WHITE CHANNELIZING LINE 6 IN SOLID WHITE GORE LINE 12 IN SOLID WHITE GORE LINE SOLID WHITE LANE LINE 6 IN SOLID YELLOW EDGE LINE WHITE TRANSVERSE LINE
ROW, SOUTHBOUND	R Y G FR FY RLA YLA GLA RRA YRA GRA W FDW DW ØA BWLL DWL DYCL DYL DYL SWCHL SWEL SWGL SWEL SWGL SWLL SYEL WTL YTL	STEADY CIRCULAR RED STEADY CIRCULAR YELLOW STEADY CIRCULAR GREEN FLASHING CIRCULAR GREEN FLASHING CIRCULAR RED FLASHING CIRCULAR YELLOW STEADY RED LEFT ARROW STEADY YELLOW LEFT ARROW STEADY GREEN LEFT ARROW STEADY GREEN LEFT ARROW STEADY GREEN RIGHT ARROW STEADY YELLOW RIGHT ARROW STEADY GREEN RIGHT ARROW STEADY GREEN RIGHT ARROW STEADY WALK FLASHING DON'T WALK TRAFFIC SIGNAL PHASE 6 IN BROKEN WHITE LANE LINE (10 FT LENGTH, 30 FT GAP) DOTTED WHITE LINE (3 FT LENGTH, 9 FT GAP) DOUBLE YELLOW CENTER LINE (2 FT LENGTH, 4 FT GAP) 8 IN SOLID WHITE CHANNELIZING LINE 6 IN SOLID WHITE GORE LINE 12 IN SOLID WHITE GORE LINE SOLID WHITE LANE LINE 6 IN SOLID WHITE GORE LINE SOLID WHITE LANE LINE 6 IN SOLID WHITE GORE LINE SOLID WHITE LANE LINE 6 IN SOLID WHITE GORE LINE WHITE TRANSVERSE LINE YELLOW TRANSVERSE LINE
ROW, SOUTHBOUND	R Y G FR FY RLA YLA GLA RRA YLA GLA RRA YRA GRA W FDW DW ØA BWLL DWL DWL DVL DYL DYL SWCHL SWCH SWCH SWCH SWCH SWCH SWCH SWCH SWCH	STEADY CIRCULAR RED STEADY CIRCULAR YELLOW STEADY CIRCULAR GREEN FLASHING CIRCULAR GREEN FLASHING CIRCULAR RED FLASHING CIRCULAR YELLOW STEADY RED LEFT ARROW STEADY YELLOW LEFT ARROW STEADY GREEN LEFT ARROW STEADY GREEN LEFT ARROW STEADY GREEN RIGHT ARROW STEADY GREEN RIGHT ARROW STEADY GREEN RIGHT ARROW STEADY WALK FLASHING DON'T WALK STEADY DON'T WALK TRAFFIC SIGNAL PHASE 6 IN BROKEN WHITE LANE LINE (10 FT LENGTH, 30 FT GAP) DOTTED WHITE LINE (3 FT LENGTH, 9 FT GAP) DOUBLE YELLOW CENTER LINE DOTTED YELLOW LINE (2 FT LENGTH, 4 FT GAP) 8 IN SOLID WHITE CHANNELIZING LINE 6 IN SOLID WHITE GORE LINE 12 IN SOLID WHITE GORE LINE SOLID WHITE LANE LINE 6 IN SOLID WHITE LANE LINE 12 IN SOLID YELLOW EDGE LINE YELLOW TRANSVERSE LINE YELLOW TRANSVERSE LINE 12 IN CROSSWALK
ROW, SOUTHBOUND	R Y G FR FY RLA YLA GLA RRA YLA GLA RRA YRA GRA W FDW DW ØA BWLL DVL DVL DYCL DYL SWCHL SWEL SWEL SWEL SWEL SWEL SWEL SWEL SWE	STEADY CIRCULAR RED STEADY CIRCULAR YELLOW STEADY CIRCULAR GREEN FLASHING CIRCULAR GREEN FLASHING CIRCULAR RED FLASHING CIRCULAR YELLOW STEADY RED LEFT ARROW STEADY GREEN LEFT ARROW STEADY GREEN LEFT ARROW STEADY GREEN LEFT ARROW STEADY GREEN RIGHT ARROW STEADY YELLOW RIGHT ARROW STEADY WALK FLASHING DON'T WALK STEADY WALK FLASHING DON'T WALK STEADY DON'T WALK TRAFFIC SIGNAL PHASE 6 IN BROKEN WHITE LANE LINE (10 FT LENGTH, 30 FT GAP) DOTTED WHITE LINE (3 FT LENGTH, 9 FT GAP) DOUBLE YELLOW CENTER LINE DOTTED YELLOW LINE (2 FT LENGTH, 4 FT GAP) 8 IN SOLID WHITE CHANNELIZING LINE 6 IN SOLID WHITE GORE LINE 12 IN SOLID WHITE GORE LINE SOLID WHITE LANE LINE 6 IN SOLID YELLOW EDGE LINE WHITE TRANSVERSE LINE YELLOW TRANSVERSE LINE 12 IN CROSSWALK LANE
ROW, SOUTHBOUND	R Y G FR FY RLA YLA GLA RRA YRA GRA W FDW DW ØA BWLL DYL DYL DYL DYL SWCHL SWEL SWEL SWEL SWEL SWEL SWEL SWEL SWE	STEADY CIRCULAR RED STEADY CIRCULAR YELLOW STEADY CIRCULAR GREEN FLASHING CIRCULAR GREEN FLASHING CIRCULAR RED FLASHING CIRCULAR YELLOW STEADY RED LEFT ARROW STEADY RED LEFT ARROW STEADY GREEN LEFT ARROW STEADY GREEN LEFT ARROW STEADY GREEN RIGHT ARROW STEADY GREEN RIGHT ARROW STEADY WALK FLASHING DON'T WALK STEADY WALK FLASHING DON'T WALK STEADY DON'T WALK TRAFFIC SIGNAL PHASE 6 IN BROKEN WHITE LANE LINE (10 FT LENGTH, 30 FT GAP) DOTTED WHITE LINE (3 FT LENGTH, 9 FT GAP) DOUBLE YELLOW CENTER LINE DOTTED YELLOW LINE (2 FT LENGTH, 4 FT GAP) 8 IN SOLID WHITE CHANNELIZING LINE 6 IN SOLID WHITE GORE LINE 12 IN SOLID WHITE GORE LINE SOLID WHITE LANE LINE 6 IN SOLID WHITE GORE LINE YELLOW TRANSVERSE LINE YELLOW TRANSVERSE LINE 12 IN CROSSWALK LANE 12 IN WHITE STOP LINE
ROW, SOUTHBOUND	R Y G FR FY RLA YLA GLA RRA YRA GRA W FDW DW ØA BWLL DWL DWL DYCL DWL DYCL DYL SWCHL SWEL SWEL SWEL SWEL SWEL SWEL SWEL SWE	STEADY CIRCULAR RED STEADY CIRCULAR YELLOW STEADY CIRCULAR GREEN FLASHING CIRCULAR GREEN FLASHING CIRCULAR RED FLASHING CIRCULAR YELLOW STEADY RED LEFT ARROW STEADY RED LEFT ARROW STEADY GREEN LEFT ARROW STEADY GREEN LEFT ARROW STEADY GREEN RIGHT ARROW STEADY YELLOW RIGHT ARROW STEADY WALK FLASHING DON'T WALK STEADY WALK FLASHING DON'T WALK STEADY DON'T WALK TRAFFIC SIGNAL PHASE 6 IN BROKEN WHITE LANE LINE (10 FT LENGTH, 30 FT GAP) DOTTED WHITE LINE (3 FT LENGTH, 9 FT GAP) DOUBLE YELLOW CENTER LINE DOTTED YELLOW LINE (2 FT LENGTH, 4 FT GAP) 8 IN SOLID WHITE CHANNELIZING LINE 6 IN SOLID WHITE GORE LINE SOLID WHITE LANE LINE 12 IN SOLID WHITE GORE LINE SOLID WHITE LANE LINE 6 IN SOLID WHITE GORE LINE SOLID WHITE LANE LINE 12 IN SOLID WHITE GORE LINE YELLOW TRANSVERSE LINE YELLOW TRANSVERSE LINE 12 IN CROSSWALK LANE 12 IN WHITE STOP LINE
ROW, SOUTHBOUND	R Y G FR FY RLA YLA GLA RRA YRA GRA W FDW DW ØA BWLL DVL DVL DYCL DYL DVL SWCHL SWCH SWCH SWCH SWCH SWCH SWCH SWCH SWCH	STEADY CIRCULAR RED STEADY CIRCULAR GREEN FLASHING CIRCULAR GREEN FLASHING CIRCULAR GREEN FLASHING CIRCULAR YELLOW STEADY RED LEFT ARROW STEADY RED LEFT ARROW STEADY GREEN LEFT ARROW STEADY GREEN LEFT ARROW STEADY GREEN RIGHT ARROW STEADY GREEN RIGHT ARROW STEADY ON'T WALK FLASHING DON'T WALK STEADY DON'T WALK STEADY DON'T WALK TRAFFIC SIGNAL PHASE 6 IN BROKEN WHITE LANE LINE (10 FT LENGTH, 30 FT GAP) DOTTED WHITE LINE (3 FT LENGTH, 9 FT GAP) DOUBLE YELLOW CENTER LINE DOTTED YELLOW LINE (2 FT LENGTH, 4 FT GAP) 8 IN SOLID WHITE CHANNELIZING LINE 6 IN SOLID WHITE GORE LINE 12 IN SOLID WHITE GORE LINE SOLID WHITE LANE LINE 6 IN SOLID WHITE GORE LINE 12 IN SOLID WHITE GORE LINE SOLID WHITE LANE LINE 6 IN SOLID YELLOW EDGE LINE YELLOW TRANSVERSE LINE 12 IN CROSSWALK LANE 12 IN WHITE STOP LINE AY GUARD ABBREVIATIONS
ROW, SOUTHBOUND	R Y G FR FY RLA YLA GLA RRA YRA GRA W FDW DW ØA BWLL DVL DYCL DVL DYCL DYL SWCHL SWEL SWGL SWEL SWGL SWEL SWGL SWEL SWEL SWEL SWEL SWEL SWEL SWEL SWE	STEADY CIRCULAR RED STEADY CIRCULAR YELLOW STEADY CIRCULAR GREEN FLASHING CIRCULAR GREEN FLASHING CIRCULAR GREEN FLASHING CIRCULAR YELLOW STEADY RED LEFT ARROW STEADY YELLOW LEFT ARROW STEADY GREEN LEFT ARROW STEADY GREEN LEFT ARROW STEADY GREEN RIGHT ARROW STEADY YELLOW RIGHT ARROW STEADY GREEN RIGHT ARROW STEADY WALK FLASHING DON'T WALK TRAFFIC SIGNAL PHASE 6 IN BROKEN WHITE LANE LINE (10 FT LENGTH, 30 FT GAP) DOTTED WHITE LINE (3 FT LENGTH, 9 FT GAP) DOUBLE YELLOW CENTER LINE DOTTED YELLOW LINE (2 FT LENGTH, 4 FT GAP) 8 IN SOLID WHITE CHANNELIZING LINE 6 IN SOLID WHITE GORE LINE 12 IN SOLID WHITE GORE LINE SOLID WHITE LANE LINE 6 IN SOLID WHITE GORE LINE SOLID WHITE LANE LINE 6 IN SOLID YELLOW EDGE LINE 12 IN SOLID YELLOW EDGE LINE YELLOW TRANSVERSE LINE YELLOW TRANSVERSE LINE 12 IN CROSSWALK LANE 12 IN WHITE STOP LINE BURIED END FLARED END FLARED END
ROW, SOUTHBOUND	R Y G FR FY RLA YLA GLA RRA YRA GRA W FDW DW ØA BWLL DVL DYCL DYL DYL DYCL DYL SWCHL SWEL SWGL SWEL SWGL SWLL SWEL SWGL SWLL SYEL WTL YTL CW LN SL HIGHW/	STEADY CIRCULAR RED STEADY CIRCULAR YELLOW STEADY CIRCULAR GREEN FLASHING CIRCULAR GREEN FLASHING CIRCULAR RED FLASHING CIRCULAR YELLOW STEADY RED LEFT ARROW STEADY YELLOW LEFT ARROW STEADY GREEN LEFT ARROW STEADY GREEN RIGHT ARROW STEADY GREEN RIGHT ARROW STEADY GREEN RIGHT ARROW STEADY GREEN RIGHT ARROW STEADY WALK FLASHING DON'T WALK TRAFFIC SIGNAL PHASE 6 IN BROKEN WHITE LANE LINE (10 FT LENGTH, 30 FT GAP) DOTTED WHITE LINE (3 FT LENGTH, 9 FT GAP) DOUBLE YELLOW CENTER LINE DOTTED YELLOW LINE (2 FT LENGTH, 4 FT GAP) 8 IN SOLID WHITE CHANNELIZING LINE 6 IN SOLID WHITE GORE LINE 12 IN SOLID WHITE GORE LINE SOLID WHITE LANE LINE 6 IN SOLID WHITE GORE LINE 12 IN SOLID WHITE GORE LINE SOLID WHITE LANE LINE 6 IN SOLID YELLOW EDGE LINE 12 IN CROSSWALK LANE 12 IN WHITE STOP LINE AY GUARD ABBREVIATIONS BURIED END FLARED END FLARED END FLARED END
ROW, SOUTHBOUND	R Y G FR FY RLA YLA GLA RRA YRA GRA W FDW DW ØA BWLL DWL DVL DVL DYCL DYL DYL SWCHL SWGL SWGL SWGL SWGL SWGL SWEL SWEL SWEL SWEL SWEL SWEL SWEL SWE	STEADY CIRCULAR RED STEADY CIRCULAR GREEN FLASHING CIRCULAR GREEN FLASHING CIRCULAR GREEN FLASHING CIRCULAR YELLOW STEADY RED LEFT ARROW STEADY RED LEFT ARROW STEADY GREEN LEFT ARROW STEADY GREEN LEFT ARROW STEADY GREEN RIGHT ARROW STEADY YELLOW RIGHT ARROW STEADY GREEN RIGHT ARROW STEADY GREEN RIGHT ARROW STEADY WALK FLASHING DON'T WALK STEADY WALK FLASHING DON'T WALK STEADY DON'T WALK STEADY DON'T WALK STEADY DON'T WALK STEADY ODN'T WALK TRAFFIC SIGNAL PHASE 6 IN BROKEN WHITE LANE LINE (10 FT LENGTH, 30 FT GAP) DOUTED WHITE LINE (3 FT LENGTH, 9 FT GAP) DOUBLE YELLOW CENTER LINE DOTTED YELLOW UNE (2 FT LENGTH, 4 FT GAP) 8 IN SOLID WHITE CORE LINE 12 IN SOLID WHITE GORE LINE 12 IN SOLID WHITE GORE LINE 5 OLID WHITE LANE LINE 6 IN SOLID WHITE GORE LINE 12 IN SOLID WHITE GORE LINE 12 IN SOLID YELLOW EDGE LINE 12 IN CROSSWALK LANE 12 IN WHITE STOP LINE AY GUARD ABBREVIATIONS BURIED END FLARED END FLARED END FLARED END TRANSITION BEAM W-BEAM TO THRIE BEAM TBAL
ROW, SOUTHBOUND	R Y G FR FY RLA YLA GLA RRA YRA GRA W FDW DW ØA BWLL DWL DVL DYCL DYL DYL SWCHL SWCH SWCH SWCH SWCH SWCH SWCH SWCH SWCH	STEADY CIRCULAR RED STEADY CIRCULAR YELLOW STEADY CIRCULAR GREEN FLASHING CIRCULAR RED FLASHING CIRCULAR RED FLASHING CIRCULAR YELLOW STEADY RED LEFT ARROW STEADY RED LEFT ARROW STEADY GREEN LEFT ARROW STEADY GREEN RIGHT ARROW STEADY GREEN RIGHT ARROW STEADY GREEN RIGHT ARROW STEADY ON'T WALK STEADY ON'T WALK STEADY DON'T WALK STEADY DON'T WALK STEADY DON'T WALK TRAFFIC SIGNAL PHASE 6 IN BROKEN WHITE LANE LINE (10 FT LENGTH, 30 FT GAP) DOTTED WHITE LINE (3 FT LENGTH, 9 FT GAP) DOUBLE YELLOW CENTER LINE DOTTED YELLOW LINE (2 FT LENGTH, 4 FT GAP) 8 IN SOLID WHITE CHANNELIZING LINE 6 IN SOLID WHITE GORE LINE 12 IN SOLID WHITE GORE LINE SOLID WHITE LANE LINE 6 IN SOLID YELLOW EDGE LINE 12 IN CROSSWALK LANE 12 IN CROSSWALK LANE 12 IN WHITE STOP LINE BURIED END FLARED END FLARED END TRANSITION BEAM W-BEAM TO THRIE BEAM TRAILING END TRANSITION BEAM W-BEAM TO THRIE BEAM TRAILING END TERMINAL SECTION

LEGEND

EXISTING

 \bigcirc

 $\sim \sim \sim \sim$

 \ge

X-----X-----X

EDGE OF PAVEMENT **GRANITE CURB** BOUND (TYPE NOTED) PROPERTY LINE CONSTRUCTION BASELINE CATCH BASIN

CATCH BASIN CURB INLET WATER MANHOLE DRAINAGE MANHOLE SEWER MANHOLE **TELEPHONE MANHOLE** ELECTRIC MANHOLE ELECTRIC HAND HOLE GAS GATE WATER GATE HYDRANT UTILITY POLE, TELEPHONE, POWER GUY POLE LIGHT POLE DRAINAGE PIPE (LENGTH, SIZE & TYPE OF MATERIAL) SEWER LINE (LENGTH, SIZE & TYPE OF MATERIAL) WATER MAIN (NOTE SIZE) TELEPHONE CONDUIT (NAME OF UTILITY) ELECTRIC CONDUIT (NAME OF UTILITY) GAS MAIN (NOTE SIZE) BALANCED STONE WALL **RETAINING WALL** STEEL BEAM GUARD RAIL **TEMPORARY CONC BARRIER** MOVEABLE CONC BARRIER SIGN AND POST FIRE ALARM BOX

TREE HEDGE FENCE

TRAFFIC SIGNAL CONDUIT

WHEELCHAIR RAMP

BORING

TEST PIT

VEHICULAR SIGNAL HEAD AND POST PEDESTRIAN WALK-DON'T WALK SIGNAL

PEDESTRIAN PUSH BUTTON ASSEMBLY

TRAFFIC CONTROLLER AND CABINET INDUCTION LOOP DETECTOR

12" X 12" PULL BOX

OPTICAL DETECTOR

PREEMPTION CONFIRMATION BEACON FIBER ROLL

P:\61131\127-61131-11001\CAD\SheetFiles\M-12-027_SALEM_EB\20110223_DWG_CEC_JFW_LEGEND_M-12-027.dwg 3/8/2011 10:47:30 AM

GENERAL NOTES

- 1. THE PROJECT BASE MAPPING SHOWN WAS PREPARED FROM FIELD SURVEY PERFORMED BY SURVEYING AND MAPPING CONSULTANTS, IN 2010. ACCURACY IS NOT GUARANTEED. THE LOCATIONS OF EXISTING STRUCTURES SUCH AS SEWERS, DRAINS, WATER MAINS AND OTHER UTILITIES ARE ONLY APPROXIMATE AND THE ENGINEER DOES NOT GUARANTEE THEIR NUMBER OR LOCATIONS. THE CONTRACTOR SHALL VERIFY THE LOCATION OF ALL UNDERGROUND UTILITIES BEFORE EXCAVATING.
- WHERE THE NEW CONSTRUCTION COINCIDES WITH PRESENT TRAVELED WAYS, THE CONTRACTOR SHALL PERFORM HIS WORK IN A MANNER ACCEPTABLE TO THE ENGINEER SO THAT INTERFERENCE TO BUSINESS CONCERNS AND ABUTTERS, ON ACCOUNT OF THE CONSTRUCTION WORK, IS KEPT TO A MINIMUM. THE CONTRACTOR SHALL MAINTAIN SAFE AND REASONABLE ACCESS TO AND FROM ABUTTING PROPERTIES AT ALL TIMES AT NO ADDITIONAL COST.
- 3. THE CONTRACTOR SHALL EXCAVATE TEST PITS TO VERIFY LOCATIONS OF EXISTING UTILITIES AS INDICATED OR AS DIRECTED BY THE ENGINEER.
- 4. THE CONTRACTOR SHALL COORDINATE HIS WORK WITH THE UTILITY COMPANIES DOING WORK IN THE SAME AREA. THE CONTRACTOR SHALL ALLOW THE UTILITY COMPANIES AND THEIR REPRESENTATIVES TO INSTALL THEIR SYSTEMS WITHIN CITY OWNED STREETS AND EASEMENTS.
- 5. THE CONTRACTOR'S ATTENTION IS DIRECTED TO EXISTING LABELED SEWER MANHOLE OR DRAINAGE MANHOLE COVERS SHOWN ON THE PLANS AS THEY MAY NOT ACCURATELY REPRESENT THE UNDERGROUND SERVICE. PRIOR TO ANY WORK THE CONTRACTOR SHALL NOTIFY THE ENGINEER OF AN EXISTING COVER NOT ACCURATELY REPRESENTING THE SERVICE BELOW.
- NO EXISTING PUBLIC UTILITY STRUCTURES SHALL BE ABANDONED AND/OR DISMANTLED WITHOUT AUTHORIZATION FROM THE ENGINEER.
- 7. REFER TO THE PROJECT STORMWATER POLLUTION PREVENTION PLAN FOR PROTECTION OF EXISTING DRAINAGE FACILITIES.
- 8. FINAL LOCATION OF TRAFFIC SIGNS AND SUPPORTS SHALL BE AS SHOWN ON THE TEMPORARY TRAFFIC CONTROL PLANS AND CONSTRUCTION PLANS AND MAY IF, NECESSARY, AT DISCRETION OF THE ENGINEER, BE MODIFIED IN THE FIELD AS APPROPRIATE.
- 9. DETAILS FOR SIGN SUPPORTS SHALL BE IN ACCORDANCE WITH MASSDOT STANDARD DRAWINGS.
- 10. DAMAGE OF PROPERTY BEYOND THE WORK LIMITS CAUSED BY THE CONTRACTOR'S OPERATIONS SHALL BE REPAIRED BY THE CONTRACTOR AT THE CONTRACTOR'S EXPENSE, SUBJECT TO THE APPROVAL OF THE ENGINEER AND ACCEPTANCE OF THE PROPERTY OWNER.
- 11. ALL NON-PRECAST CEMENT CONCRETE USED ON THIS PROJECT SHALL HAVE A MINIMUM COMPRESSIVE STRENGTH OF 3000 PSI OR AS OTHERWISE SPECIFIED ON THE PLANS OR IN THE SPECIAL PROVISIONS.
- 12. THE CONTRACTOR SHALL DISPOSE OF ALL WASTE MATERIAL IN ACCORDANCE WITH ALL FEDERAL, STATE AND LOCAL REGULATIONS AT HIS OWN EXPENSE IF NOT OTHERWISE SPECIFIED, OUTSIDE OF THE PROJECT LIMITS.
- 13. THE LOCATIONS OF PROPOSED PIPELINES, STRUCTURES AND UTILITY RELOCATIONS MAY BE MODIFIED TO SUIT FIELD CONDITIONS AT THE DISCRETION OF THE ENGINEER. OFFSETS TO CATCH BASINS ARE TO THE CENTER OF THE GRATE AT FACE OF CURB.
- 14. IF THE CONTRACTOR DAMAGES UTILITY SERVICES, HE SHALL IMMEDIATELY NOTIFY THE RESPECTIVE UTILITY COMPANY AND SHALL IMMEDIATELY REPLACE OR REPAIR, UNLESS INDICATED OTHERWISE BY THE RESPECTIVE UTILITY OWNER.
- 15. RIM ELEVATIONS MAY BE SUBJECT TO FIELD ADJUSTMENTS AS DIRECTED BY THE ENGINEER. ELEVATIONS ON CATCH BASINS ARE REFERENCED TO THE CENTER OF GRATE AT FACE OF CURB.

MEDFORD I-93 OVER SALEM STREET EB

STATE	FED. AID PROJ. NO.	SHEET NO.	TOTAL SHEETS				
MASS.	BRI-093-1 (524) STP 093-1	5	60				
	PROJECT FILE NO.	606255					

LEGEND AND GENERAL NOTES

- 16. SAFETY CONTROLS FOR CONSTRUCTION OPERATIONS SHALL BE IN ACCORDANCE WITH MASSDOT REQUIREMENTS, THE 2003 MUTCD AND THE SPECIAL PROVISIONS.
- 17. EXISTING CURB (GRANITE AND CONCRETE) IN GOOD CONDITION SHALL BE RESET. NEW CURB SHALL BE USED ONLY AFTER ALL EXISTING CURB HAS BEEN RESET.
- 18. THE CONTRACTOR SHALL NOTIFY DIGSAFE PRIOR TO THE START OF ANY WORK ON THE PROJECT. IN ADDITION, THE CONTRACTOR SHALL SAFELY AND ACCURATELY DETERMINE THE LOCATION AND ELEVATION OF ALL EXISTING UTILITIES ON THE SITE PRIOR TO THE START OF WORK.
- 19. REMOVE AND REPLACE DRAINAGE AND UTILITY CASTINGS WITHIN THE LIMITS OF WORK WITH HOOK-LOCK CASTINGS IF NOT ALREADY EQUIPPED.

SURVEY NOTES

SURVEYING AND MAPPING CONSULTANTS (SMC) 325 WOOD ROAD, SUITE 109 BRAINTREE, MA 02184

- 1. THE UTILITY INFORMATION SHOWN IS COMPILED BASED ON FIELD SURVEY INFORMATION AND RECORD INFORMATION. THE LOCATIONS OF UNDERGROUND PIPES AND CONDUITS HAVE BEEN DETERMINED FROM RECORD PLANS AND ARE APPROXIMATE ONLY. LOCATIONS OF UNDERGROUND STRUCTURES MAY VARY FROM LOCATIONS SHOWN HEREON. ADDITIONAL BURIED UTILITIES/STRUCTURES MAY BE ENCOUNTERED. THE PROPER UTILITY ENGINEERING DEPARTMENT/COMPANY SHOULD BE CONSULTED AND THE ACTUAL LOCATIONS OF SUBSURFACE STRUCTURES SHOULD BE DETERMINED IN THE FIELD BEFORE PLANNING FUTURE CONNECTIONS. CONTACT THE DIG SAFE CALL CENTER AT 1-888-344-7233 SEVENTY-TWO HOURS PRIOR TO EXCAVATION, BLASTING, GRADING, AND/OR PAVING.
- 2. HORIZONTAL COORDINATES REFER TO NORTH AMERICAN DATUM OF 1983 (NAD 83).
- 3. ELEVATION REFERS TO THE NORTH AMERICAN VERTICAL DATUM OF 1988 (NAVD 88).

P:\61131\127-61131-11001\CAD\SheetFiles\M-12-027_SALEM_EB\20110223_DWG_CEC_JFW_TYPICAL_M-12-027.dwg 5/25/2011 3:53:47 PM

		MEDFORD I-93 OVER SALEM STREET EB			
		STATEFED. AID PROJ. NO.SHEET NO.TOTAL SHEETSMASS.BRI-093-1 (524) STP 093-1660PROJECT FILE NO.606255			
		TYPICAL SECTIONS			
	PAVEMENT	NOTES			
	EMENT MILLING AND RESURFACING:				
	<u>I-93</u>				
	*SURFACE: 3 ¹ " S PLAC	UPERPAVE BRIDGE SURFACE COURSE (SSC-B-12.5) CED iN 2 LAYERS, 1 ¹ / ₂ " TOP AND 2" BOTTOM			
	LEVE	LEVELING AND PAVEMENT MILLING VARIABLE DEPTH			
	ELING COURSES SHALL BE PLACED IN 3 ¹ / ₂ " (MAX) RSES.				
	ELING COURSES FROM $1\frac{1}{2}$ " TO 2" SHALL BE SUPERPA RMEDIATE COURSE (SIC-12.5) AND LEVELING RSES FROM 2" TO $3\frac{1}{2}$ " SHALL BE SUPERPAVE RMEDIATE COURSE (SIC-19.0).				
	LEVE OF T SIZE	LING COURSES SHALL BE A MINIMUM THICKNESS HREE TIMES THE NOMINAL MAX AGGREGATE FOR THE SUPERPAVE HMA MIXTURE			
P PAVEMENT MILLING CH UNDER GUARD RAIL (TYP)	ASP RATI 0.05	HALT EMULSION FOR TACK COAT APPLIED AT A E OF 0.07 GAL/SY FOR MILLED SURFACES AND GAL/SY FOR UNMILLED SURFACES			
	ESTI THE	MATED DESIGN TRAFFIC IS 18 MILLION 18-KIP ESALs PERFORMANCE GRADE ASPHALT SHALL BE PG64-28			
— APPROX EXIST GROUND	PROPOSED FUL	L DEPTH PAVEMENT:			
	I-93 - LIMITED LC	CATIONS			
	*SURFACE:	$3\frac{1}{2}$ " SUPERPAVE BRIDGE SURFACE COURSE PLACED IN 2 LAYERS, $1\frac{1}{2}$ " TOP AND 2" BOTTOM			
	INTERMEDIATE:	4 ¹ " HAND PLACED AND COMPACTED HOT MIX ASPHALT INTERMEDIATE COURSE-BINDER PLACEE IN TWO EQUAL LAYERS			
	BASE:	4" HAND PLACED AND COMPACTED HOT MIX ASPHALT BASE COURSE PLACED IN ONE LAYER			
	SUBBASE:	12" GRAVEL BORROW (TYPE B) 24" SPECIAL BORROW			

* DEPTH OF SURFACE MATERIAL MAY VARY. SEE PROP PAVEMENT

				N00 <u>41</u> 49"E	
E	EXISTING	DRAINAGE S	TRUCTURES		
	TYPE	STATION	RIM ELEV.		
	СВ	95+99.3 57.4' RT	39.18*	-	STA 96+07 N 2977714.4890
	СВ	96+60.5 67.4' L T	42.30		E 763072.9778
*RI		67.4' LT		DN	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c} \text{INTER} \\ 40.710 \\ \times \\ 40.380 \\ \times \\ 40.410 \\ \times \\ 39.940 \\ 50 \\ \times \\ 95 \\ \hline \\ 39.55 \\ \hline \\ 40.150 \\ \hline \\ \times \\ 40.090 \\ \end{array} $	$\begin{array}{c} \text{STATE} 93 - S0 \\ \text{STATE} 93 - S0 \\ \text{A1.120} \\ \text{A0.530} \\ \text{A0.640} \\ \text{A0.640} \\ \text{A0.340} \\ \text{A0.340} \\ \text{A0.160} \\ \text{A0.010} \\ \text{A0.340} \\ \text{A0.340}$	$\begin{array}{c} \text{OUTHBOUND}_{41.280} \\ \begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & $	50 \times 41.410 \times 40.970 \times 41.050 \times 40.800 \times 40.430 96 \times 40.430 96 \times 40.430 96 \times 40.770 40.770 40.770 40.72 40.72 $40.4240.83490$ \times $40.4240.83490$	$\begin{array}{c} \times \\ 41.480 \\ 40.76 \\ 40.76 \\ 40.60 \\ 40.590 \\ 40.40 \\ 40.40 \\ 40.30 \\ 40.820 \\ 40.820 \\ 40.820 \\ 40.850 \\ 40.560 $
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	×39.393393650 ×4 ×39.650 ×39.670 20 ×39.380 ×3 3.960 ×39 ×38.720 570	$\begin{array}{c} & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ &$	$\begin{array}{c} & & \times_{40.170} & & \times_{40.7} \\ & & \times_{39.810} & & \times_{39.840} & \times_{39.860} \\ & & & \times_{39.646} \\ & & & \times_{39.646} \\ & & & \times_{39.646} \\ & & & & \times_{39.340} \\ & & & & & \times_{39.340} \\ & & & & & & \times_{39.340} \\ & & & & & & & \times_{39.340} \\ & & & & & & & & \times_{39.340} \\ & & & & & & & & & \times_{39.340} \\ & & & & & & & & & & \times_{39.340} \\ & & & & & & & & & & & \times_{39.340} \\ & & & & & & & & & & & & \times_{39.340} \\ & & & & & & & & & & & & & \\ & & & & $	$\begin{array}{c} & \times \\ 190 & \times \\ 39.900 & \times \\ 39.900 & \times \\ 39.540 & \times \\ 39.660 & \times \\ 39.660 & \times \\ 39.21 \\ R = 39.18 \\ 39.21 \\ R = 39.18 \\ 39.20 & \times \\ 39.30 \\ 200 & \times \\ 39.400 $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	×39.39358610 ×4 ×39.650 ×39.670 20 ×39.380 ×3 8.960 ×39 ×38.720 670 ×39	$\begin{array}{c} & & & & & & & & & & & & & & & & & & &$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 190 \\ \times \\ 39.900 \\ \times \\ 39.900 \\ \times \\ 39.540 \\ \times \\ 39.600 \\ \times \\ 39.600 \\ \times \\ 39.21 \\ R \\ R \\ S \\ S$	$\begin{array}{c} 41.00 \\ \times \\ 40.390 \\ \times \\ 40.260 \\ \times \\ 40.260 \\ \times \\ 40.260 \\ \times \\ 39.920 \\ \times \\ 39.920 \\ \times \\ 39.710 \\ \times \\ 39.710 \\ \times \\ 39.700 \\ \times \\$

MEDFORD I-93 OVER SALEM STREET EB

1.00	OVER OREEN OT		
STATE	FED. AID PROJ. NO.	SHEET NO.	TOTAL SHEETS
MASS.	BRI-093-1 (524) STP 093-1	11	60
	PROJECT FILE NO.	606255	

GRADING AND CURB TIE PLAN

		CU	IRVE TAI	BLE			
F WORK	CURVE	LENGTH (ft)	RADIUS (ft)	TANGENT (ft)	DELTA		
.2702	C1	46.27'	1200.00'	23.14'	2°12'32"		
ттттттт 0 × 41.480	×	X = 014		Guar			
$\begin{array}{c} \mathbf{x}_{41.680} \\ \mathbf{x}_{41.685} \\ \mathbf{x}_{770} \\ \mathbf{x}_{41.510} \\ \mathbf{x}_{41.510} \\ \mathbf{x}_{41.510} \\ \mathbf{x}_{41.310} \\ \mathbf{x}_{41.310} \\ \mathbf{x}_{41.510} \\ \mathbf{x}_{41.310} \\ \mathbf{x}_{41.3$	× 41.140 × 41.130	41.014 ×40.950 ×40.950	×40.680 ×4	GUAR 0.430 × 40.290 40.480	DRAIL		×= 39.665
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	×41.140 ×41.130 ×41.460 ×41.17	41.014 ×40.950 ×40.950 ×41.260 ×41.260	×40.680 ×4 ×40.980 ×41.100	<u> </u>	2DRAIL × 40.270	× 39.900	×= 39.665 × 39.540
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	×41.140 ×41.130 ×41.460 ×41.17 ×41.140	× 41.014 × 40.950 × 41.260 × 41.050 × 41.050	×40.680 ×4 ×40.980 ×41.100 40 ×40.860	GUAR 0.430 × 40.290 40.480 × 40.480 × 40.850 × 40.850 × 40.700	2DRAIL 10 ×40.270 ×40.500 ×40.320	×39.900 ×40.230	×= 39.665 ×39.540 × 39.920
$\begin{array}{c} \hline 41.85 \\ \hline 41.85 \\ \hline 41.680 \\ \hline 41.610 \\ \hline 41.490 \\ \hline 41.610 \\ \hline 41.430 \\ \hline 41.610 \\ \hline 41.430 \\ \hline 41.610 \\ \hline 41.610$	$\times^{41.140}_{41.130}$ $\times^{41.460}_{41.170}$ $\times^{41.140}_{41.140}$ $\times^{40.70}_{40.70}$	$\begin{array}{c} \times \\ 41.014 \\ \times \\ 40.950 \\ \times \\ 41.260 \\ \times \\ 41.050 \\ \times \\ 41.050 \\ \times \\ 40.680 \end{array} \times \begin{array}{c} \times \\ 40.600 \\ \times \\ 40.600 \end{array}$	$\times_{40.680}$ \times_{4} $\times_{40.980}$ $\times_{41.100}$ 40 $\times_{40.860}$ $\times_{40.00}$ $\times_{40.470}$	<u>GUAR</u> 0.430 × 40.290 40.480 × 40.480 × 40.57 40.850 × 40.700 610 × 40.400 × 40.350	2DRAIL 10 ×40.270 ×40.500 ×40.320 ×40.160 ×40.090	×39.900 ×40.230 ×39.88	×= = = 39.665 ×39.540 ×39.920 ∞ ×39.540
$\begin{array}{c} 41.85 \\ \underline{41.85} \\ \underline{41.85} \\ \underline{41.430} \\ \underline{41.430} \\ \underline{41.430} \\ \underline{41.510} \\ \underline{41.510} \\ \underline{41.510} \\ \underline{41.310} \\ \underline{41.610} \\ \underline{41.490} \\ \underline{41.490} \\ \underline{41.490} \\ \underline{41.490} \\ \underline{41.230} \\ \underline{41.230} \\ \underline{40.850} \\ \underline{40.850} \\ \underline{40.850} \\ \underline{40.850} \\ \underline{40.820} \\ \underline{40.440} \\ \underline{40.33} \end{array}$	×41.140 ×41.130 ×41.460 ×41.17 ×41.140 ×40.7 0 ×40.370 ×	$\begin{array}{c} \times & & & \\ & 41.014 \\ \times & \\ & 40.950 \\ \times & \\ & 41.260 \\ \end{array}$ $\begin{array}{c} \times & \\ & 41.050 \\ \end{array}$ $\begin{array}{c} \times & \\ & 41.050 \\ \end{array}$ $\begin{array}{c} \times & \\ & 40.680 \\ \end{array}$ $\begin{array}{c} \times & \\ & 40.600 \\ \end{array}$ $\begin{array}{c} \times & \\ & 40.600 \\ \end{array}$	\times 40.680 \times 4 40.980 \times 41.100 40 \times 40.860 \times 40.00 \times 40.470 \times 40.170	$\begin{array}{c c} & GUAR \\ \hline 0.430 & \times 40.290 \\ \hline 40.480 & \times 40.480 \\ & \times 40.850 \\ & \times 40.700 \\ \hline 6^{10} & \times 40.400 & \times 40.350 \\ \hline & & & & & & \\ 0 & & & & & & \\ 0 & & & &$	2DRAIL 10 ×40.270 ×40.500 ×40.320 ×40.160 ×40.090 920	×39.900 ×40.230 ×39.88 ×39.710	×= = = = = = = = = = = = = = = = = = =
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	\times 41.140 \times 41.130 \times 41.460 \times 41.17 \times 41.140 \times 40.7 0 \times 40.370 \rightarrow 39.860	$\begin{array}{c} \times & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ &$	\times 40.680 \times 4 \times 40.980 \times 41.100 40 \times 40.860 \times 40.0 \times 40.470 \times 40.170 \times 39.780 \times 39.530	$\begin{array}{c c} & GUAR \\ \hline & 40.290 \\ \hline & 40.430 \\ \times & 40.480 \\ \hline & & & \\ & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$	RDRAIL 0 ×40.270 ×40.500 ×40.320 ×40.160 ×40.090 0.920 ×39.500	×39.900 ×40.230 ×39.88 ×39.710 ×39.320×39.190	×= = 39.665 ×39.540 ×39.920 ×39.540 ×39.920 ×39.540 ×39.140 ×39.03

280	× _{40.120} /	× 39.950	39.810	× × 39.700 × 39.600	× 39.630	× 39.340	× 39.130	DPW MH)
× 39.86	0 ×39.810 39.760	× × 39.670 × 39		STATE⁺93 -			× 39.310 × 39.120	× 39.100 38.90	0 × _{38.820}	
550	× 39.3 039.440	× > 39.350	× 39.190 [°] 39.240	× × × × × × × × × × × × × × × × × × ×) × 39.2	409.230	× 39.130	× 38.980	$X_{38.750}$ $X_{38.750}$.610
× 39.18	(√ 39.060 ×38.	.980 × 38.8	× 38.970 × 38.91	0 × 38.910 × 38.910	×38.990 × × 38.850	, 38.890 38.840	× × × 38.830 × 38.720	× 38.700 38.700	× 38.	.450
<u>39.21</u>	X 38. 200. 760 X 38. 38	× 3.820 38.800	× × 38.660 ^{38.610}	× 38.600	× 38.670	× 38.600	× 38.540	×38.4498.490	× 38.360 ×	
× 39.090	R=38.9 × 39.362	2 × 38.940	800 × 38.67	× 38.570 <u>×</u> 38.470 ×	× 38.440	× _{38.460} × _{38.4}	440 × 38.330 × 3	^38. 8.290 × □ CE 38.200 R=	260 38 3 X 38.020 = 38.11	3.030
				38.863	<u>50.400</u>	38.390 38.771	x <u>38.260 </u>	50 UARDRAIL 37	× 38.220 38.9	746

	INTERSTATE 93 CONSTRUCTION BASELINE DATA											
TATION	NORTHING	EASTING	CURVE DATA	END STATION	NORTHING	EASTING						
75.00	2977582.5442	763076.7852	R = 4400.00'∆=2°16'44" L = 175.00' T = 87.51'	PCC 96+50.00	2977757.4824	763072.5925						
-50.00	2977757.4824	763072.5925	R = 3100.00' ∆ =3°20'55" L = 181.18' T = 90.62'	PCC 98+31.18	2977938.5793	763077.1476						
-31.18	2977938.5793	763077.1476	R = 4400.00' ∆ =2°16'44" L = 175.01' T = 87.52'	PT 100+06.19	2978113.0955	763090.1306						

MAINLINE ADVANCE SIGNS NB

PCMS 1

I	0		К		E	S	
6	0		&		2	8	
F	Е	L	L	S	W	А	Υ
U	S	Е					

Е	Х	I	Т		2	9	
3	/	4		М	Ι	L	Е

PCMS 2

Т	0		R	Т	Е	S	
6	0		&		2	8	
F	Е	L	L	S	W	А	Y

Е	Х	I	Т				
Н	Е	R	Е				
-	-	>		-	-	>	

PCMS 3										
R	Т	Е		1	6					
М	Y	S	Т	Ι	С					
V	L	Y		Р	κ	W	Y			

E	Х	I	Т				
Н	Е	R	Е				
-	-	٨		-	-	>	

LEGEND

- REFLECTORIZED DRUM
- PORTABLE CHANGEABLE MESSAGE SIGN (PCMS)
- \rightarrow PROPOSED TRAFFIC FLOW
- \bigotimes WORK ZONE
- SIGN LOCATION REFERENCE TO \otimes SYSTEMWIDE ADVANCE SIGN PLAN
- SIGN

NOTES:

- 1. FOR I-93 SOUTHBOUND TRAFFIC CONTROL DURING NORTHBOUND BRIDGE CLOSURE, SEE TYPICAL DETAILS IN SYSTEMWIDE TMP PACKAGE.
- 2. PCMS UNITS SHALL BE PLACED OUTSIDE THE CLEAR ZONE OR PROTECTED BY BARRIER AS NECESSARY.
- 3. AT BEGINNING OF WEEKEND WORK, REPLACE SIGNS "A" AND "C" FROM ADVANCE SIGN PLAN IN SYSTEMWIDE TMP PACKAGE WITH W20-5aaR AND W20-5abR SIGNS AS SHOWN. AT END OF WEEKEND WORK, RESTORE SIGNS "A" AND "C" AS SHOWN IN SYSTEMWIDE TMP PACKAGE.

MEDFORD

I-93 OVER SALEM STREET EB

FED. AID PROJ. NO. STATE BRI-093-1 (524) STP 093-1 MASS. PROJECT FILE NO.

SHEET TOTAL NO. SHEET 18 60 606255

TEMPORARY TRAFFIC CONTROL PLAN MAINLINE ADVANCE SIGNS SB

PCMS 1								
Т	0							
F	Е	L	L	S	W	А	Y	
&		R	Т	Е		6	0	

U	S	Е		Т	Е	М	Р
Е	Х	Ι	Т				
1		1	/	2		М	I

PCMS 2

Т	0	R	Т	Е	S	
3	8	&		1	6	

U	S	Е		Т	Е	М	Ρ
Е	Х	I	Т				
1		Μ	Ι	L	Е		

PCMS 3

Е	X	-	Т	S			
3	3		Т	0		3	0
С	L	0	S	Е	D		

U	S	Е		Т	Е	М	Ρ
Е	X	Ι	Т				
1	/	2		М	Ι	L	Е

PCMS 4

3 8 & 1 6 F F I I S W A Y	Т	0		R	Т		6	0
FFIISWAY	3	8		&		1	6	
	F	Е	L	L	S	W	А	Y

Е	Х	I	Т				
Н	Е	R	Е				
-	-	^		-	-	>	

LEGEND

REFLECTORIZED DRUM

PORTABLE CHANGEABLE MESSAGE SIGN (PCMS)

PROPOSED TRAFFIC FLOW

 \bigotimes WORK ZONE

SIGN LOCATION REFERENCE TO \otimes SYSTEMWIDE ADVANCE SIGN PLAN

SIGN T

NOTES:

- 1. FOR I-93 NORTHBOUND TRAFFIC CONTROL DURING SOUTHBOUND BRIDGE CLOSURE, SEE TYPICAL DETAILS IN SYSTEMWIDE TMP PACKAGE.
- 2. PCMS UNITS SHALL BE PLACED OUTSIDE THE CLEAR ZONE OR PROTECTED BY BARRIER AS NECESSARY.
- 3. AT BEGINNING OF WEEKEND WORK, REPLACE SIGNS "A" AND "C" FROM ADVANCE SIGN PLAN IN SYSTEMWIDE TMP PACKAGE WITH W20-5aaR AND W20-5abR SIGNS AS SHOWN. AT END OF WEEKEND WORK, RESTORE SIGNS "A" AND "C" AS SHOWN IN SYSTEMWIDE TMP PACKAGE.

DETOUR AHEAD

W20-2c

						MEDFORD I-93 OVER SALEM STREET EB
Г						STATE FED. AID PROJ. NO. SHEET TOTAL NO. SHEETS
		<u>KEY</u>				MASS. STP 093-1 27 60 PROJECT FILE NO. 606255
	•	REFLEC				TEMPORARY TRAFFIC CONTROL PLAN
		36" REFI		ONE		TYPICAL DETAILS
		CONST		TTENULATOD		
				TIENUATOR	GE	ENERAL NOTES:
				OW	1.	ALL CONSTRUCTION SIGNING, DRUMS, BARRICADES AND OTHER DEVICES SHALL
		REFLEC				CONFORM WITH THE 2003 MANUAL ON UNIFORM TRAFFIC CONTROL DEVICES (MUTCD) AS AMENDED.
		TYPE C	(STEADY) LIGH	Т	2.	ALL DRUMS SHALL BE SET AT 20' ON CENTER MAX. ON LOCAL ROADWAY AND 50' ON
		SPECIAI	LIGHTING UNI	T (SLU)		CENTER MAX ON I-93 UNLESS OTHERWISE NOTED OR ADJUSTED BY THE RESIDENT ENGINEER.
	7 \	PORTAE SIGN (P	BLE CHANGEAB CMS)	LE MESSAGE	3.	ALL DRUMS SHALL BE APPROXIMATELY PLACED AND MOVED AS NECESSARY TO
	\boxtimes	WORK Z	ONE			MAINTAIN ADEQUATE ABUTTER ACCESS AT ALL TIMES. WORK MAY REQUIRE ADDITIONAL SIGNS, DRUMS AND OTHER TRAFFIC CONTROL DEVICES, GRADING AND
		MOVEA	BLE IMPACT AT	TENUATOR		TEMPORARY PAVEMENT FOR PASSAGE OF PEDESTRIAN, VEHICULAR AND EMERGENC TRAFFIC THROUGH THE WORK AREAS, BOTH DURING AND AFTER WORKING HOURS, T
	(\mathbf{P})	POLICE	OFFICER / FLAG	GGER	4	MAINTAIN SUCH ACCESS.
		MOVEA	BLE PRECAST C	ONCRETE	4.	DELINEATION BY USE OF DRUMS.
	\boxtimes	MOVEA	R BLE BARRIER TI E	RANSFER	5.	EXCAVATION EDGES IN EXCESS OF 4" DEEP SHALL BE PROTECTED DURING NON-WOR HOURS BY BACKFILLING WITH A WEDGE OF GRAVEL OR SOIL TO COMPACTED 1:4 SLOPE.
		FR			6.	11' MINIMUM LANE WIDTHS SHALL BE MAINTAINED AT ANY TIME DURING CONSTRUCTION.
NE TA	PER		AT LE	ASTL	7.	NON-ESSENTIAL TRAFFIC CONTROL DEVICES SHALL BE COVERED OR REMOVED
IIFTIN	G TAPER		AT LEA	AST L/2	8	ADVISORY SPEED PLATES (W13-1) SHALL BE USED IF APPROPRIATE AND AS DIRECTED
				AST L/3	0.	BY THE RESIDENT ENGINEER.
WNSTREAM TAPER 100 FT PER LANE				ER LANE	9.	SIGNS INSTALLED ON PORTABLE STANDS REQUIRE 12 INCH MINIMUM MOUNTING HEIGHT FROM THE ROADWAY SURFACE TO THE BOTTOM OF THE SIGN.
DES 30 MF	IGN SPE PH (SALE	ED M ST)	TAPER L FE	ENGTH (L) EET	10.	SIGNS INSTALLED ON PORTABLE STANDS PLACED AMONG CHANNELIZATION DEVICES REQUIRE A 36 INCH MINIMUM MOUNTING HEIGHT FROM THE ROADWAY SURFACE TO THE BOTTOM OF THE SIGN.
40 N		DRE	L=V	8760 WS	11.	SIGNS MOUNTED ON POSTS REQUIRE A MINIMUM 84 INCH MOUNTING HEIGHT FROM
NE TA	PER	L = V	VS²/60 = 12(30)²	/60 = 180'	40	THE ROADWAY OR SIDEWALK SURFACE TO THE BOTTOM OF THE SIGN.
HFTING	G TAPER ER TAPER	L/2 =	= 180'/2 = 90' = (3(30 ²)/60)/3 = -	15'	12.	MONDAY THROUGH FRIDAY, UNLESS OTHERWISE DIRECTED BY THE RESIDENT ENGINEER.
TED A	ADVANCE		NING SIGN SF	PACING	13.	CONTRACTOR MAY CLOSE TWO LANES ON I-93 (NB AND/OR SB) FROM 9 PM TO 5 AM MONDAY THROUGH FRIDAY, UNLESS OTHERWISE DIRECTED BY THE RESIDENT
		DISTA	NCE BETWEEN	I SIGNS (FT)		ENGINEER.
		A	В	С	14.	W20-8 SIGNS SHALL BE REPLACED BY W20-7a SIGNS WHEN FLAGGERS ARE USED IN LIEU OF POLICE OFFICER DETAILS.
ADWA AYS		350 500	350 500	350 500	15.	ALL IMPACT ATTENUATORS ON I-93 SHALL BE DESIGNED TO MEET THE CRITERIA FOR TEST LEVEL 3 OF NCHRP 350.
SWAYS	6	1,000	1,500	2,640	16.	ALL IMPACT ATTENUATORS ON LOCAL ROADWAYS SHALL BE DESIGNED TO MEET THE
<u>2</u>					17	ALL TEMPORARY MARKINGS SHALL BE WATER-BORNE PAINT OR APPROVED TAPE
NG SIO NT ENO	JINS MAY E GINEER.	3E NECES	SARY AS		18.	ALL TRAFFIC CONTROL DEVICES ON TAPERS AND AT ROADWAY/RAMP CLOSURE
TRAFI E MAIN	FIC ONLY, NTAINED A	ARE SHO S SHOWN	WN. I		10	ALL REFLECTORIZED COMES SHALL RE & MINIMUM OF 36 INCHES IN HEIGHT
					20.	. REFER TO MOVEABLE PRECAST CONCRETE BARRIER SPECIFICATIONS 853.3 AND 853.3
					<u>.</u>	FOR ADDITIONAL INFORMATION.
RAVEL PERN	VEL.				21.	ADVANCE OF THE WORK AREA FOR ALL TEMPORARY WORK ZONES OR AS DIRECTED THE RESIDENT ENGINEER.
I PEDE /ITH A TRIAN	ESTRIAN B PPROPRIA S TO THE (YPASS T TE SIGNS OPPOSITE	YPE I, S SHALL BE E SIDE OF		22.	PROVIDE CLEAR ZONE AROUND THE MOVEABLE IMPACT ATTENUATOR DEVICE AS REQUIRED BY THE MANUFACTURER.
DESTI ENGIN	RIAN BYPA EER.	SS TYPE	II, AND AS		23.	A POLICE DETAIL IS REQUIRED FOR EACH CLOSED LANE ON I-93 IN ACCORDANCE WIT MASSDOT STANDARDS.
PICTED	SHALL BE THAT SH	E REVERS OWN.	ED FOR		24.	BLUNT ENDS OF BARRIER SHALL BE PROTECTED AT ALL TIMES IN ACCORDANCE WITH THE AASHTO ROADSIDE DESIGN GUIDE.
3SWA AINT A	LKS SHALI AS DIRECT	_ BE 12" V ED BY TH	VIDE IE RESIDENT		25.	ILLUMINATION REQUIRED FOR NIGHTTIME WORK TO A MINIMUM OF EXISTING LIGHTING LIGHTING LIGHTING LIGHTING LIGHTING
THWA	YS SHALL	BE MAINT	AINED IN		26.	ADVANCED WORK ZONE SIGNS (W20-1 SERIES AND R2-10a) ARE INCLUDED ON THE

							1-93	MEDFORD OVER SALEM ST	REET	EB
[]			STATE	FED. AID PROJ. NO.	SHEET NO.	TOTAL SHEETS
	<u>KEY</u>						MASS.	BKI-093-1 (524) STP 093-1 PROJECT FII F NO	27 606255	60
	REFI	LECTO		1		-		RARY TRAFFIC CO		
	▲ 36" F	REFLE	CTORIZED C	ONE				TYPICAL DETA	AILS	,
		STRU	CTION SIGN							
	штр тем	PORA	RY IMPACT A	TTENUATOR	0.5					
	TYPI	e III Ba	ARRICADES		<u>G</u> E	NERAL NOTES:				
-	PRO	POSEI	D TRAFFIC FI	_OW	1.	ALL CONSTRUCTION SIGNING, DRUMS, CONFORM WITH THE 2003 MANUAL ON	, BARRIC UNIFOR	ADES AND OTHER D	EVICES	SHALL
	REFI	LECTO E C (ST	RIZED DRUN TEADY) LIGH	/ WITH T	2.	AS AMENDED.	ENTER	IAX. ON LOCAL ROA	DWAY A	AND 50' ON
	SPE	CIAL L	IGHTING UNI	T (SLU)		CENTER MAX ON I-93 UNLESS OTHERW	ISE NOT	ED OR ADJUSTED E	IY THE F	RESIDENT
,	POR			LE MESSAGE	3			D AND MOVED AS N	FCESSA	ARY TO
	SIGN		10 <i>)</i>		J.	MAINTAIN ADEQUATE ABUTTER ACCES			REQUI	
	WOF	KK ZON				TEMPORARY PAVEMENT FOR PASSAGE	E OF PEI	DESTRIAN, VEHICUL		EMERGEN
	MOV	'EABLE	= IMPACT AT	IENUATOR		MAINTAIN SUCH ACCESS.	, duth D	URING AND AFTER	VUKKIN	IG TUUKS,
(P POLI	ICE OF	FICER / FLAG	GGER	4.	GRADE SEPARATIONS IN EXCESS OF 2	" DURING	g non-working ho	OURS WI	ILL REQUIRI
-	MOV	'EABLE RIER	E PRECAST C	CONCRETE		DELINEATION BY USE OF DRUMS.				_
		'EABLE HINE	E BARRIER T	RANSFER	5.	EXCAVATION EDGES IN EXCESS OF 4" HOURS BY BACKFILLING WITH A WEDG SLOPE.	DEEP SH E OF GR	IALL BE PROTECTED AVEL OR SOIL TO C	DURIN OMPAC	G NON-WOF TED 1:4
					6.	11' MINIMUM LANE WIDTHS SHALL BE M CONSTRUCTION.	IAINTAIN	IED AT ANY TIME DU	RING	
TYPE C	OF TAPER		TAPER L	ENGTH (L)	7.	NON-ESSENTIAL TRAFFIC CONTROL DE	EVICES S	HALL BE COVERED	OR REM	IOVED
				AST L		DURING NON-WORKING HOURS.				
	TAPER		AT LEA	AST L/2	8.	ADVISORY SPEED PLATES (W13-1) SHA	ALL BE U	SED IF APPROPRIAT	E AND A	AS DIRECTE
WNSTRE	AM TAPER		100 FT P	ER LANE	Q					
					9.	HEIGHT FROM THE ROADWAY SURFAC	E TO TH	E BOTTOM OF THE S	SIGN.	, NTINO
DESIGI 30 MPH	N SPEED (SALEM ST)	TAPER L FE	ENGTH (L) EET	10.	SIGNS INSTALLED ON PORTABLE STAN REQUIRE A 36 INCH MINIMUM MOUNTIN	IDS PLAC NG HEIGH	CED AMONG CHANN HT FROM THE ROAD	ELIZATIO WAY SU	ON DEVICES
40 MPH			L=W	S²/60	11					
	R I	= WS	L=1	//S //60 = 180'	11.	THE ROADWAY OR SIDEWALK SURFAC	E TO TH	E BOTTOM OF THE S	SIGN.	
	APER L	_/2 = 18	80'/2 = 90'		12.	CONTRACTOR MAY CLOSE ONE LANE	ON I-93 (I	NB AND/OR SB) FRO		TO 5 AM
HOULDER	TAPER L	_/3 = (3	8(30²)/60)/3 =	15'		MONDAY THROUGH FRIDAY, UNLESS C ENGINEER.	THERWI	SE DIRECTED BY TH	1E RESI	JENI
		A D			13.	CONTRACTOR MAY CLOSE TWO LANES	6 ON I-93	(NB AND/OR SB) FR	OM 9 PN	/ TO 5 AM
IED AD	VANCED W		NG SIGN SF			MONDAY THROUGH FRIDAY, UNLESS C ENGINEER.	THERWI	SE DIRECTED BY TH	IE RESII	JENT
				C	14.	W20-8 SIGNS SHALL BE REPLACED BY	W20-7a S	GIGNS WHEN FLAGG	ERS AR	E USED IN
ADWAYS	350		350	350		LIEU OF POLICE OFFICER DETAILS.				
\YS	500		500	500	15.	ALL IMPACT ATTENUATORS ON I-93 SH TEST LEVEL 3 OF NCHRP 350.	ALL BE D	DESIGNED TO MEET	THE CR	ITERIA FOR
WAYS	1,000		1,500	2,640	16.	ALL IMPACT ATTENUATORS ON LOCAL CRITERIA FOR TEST LEVEL 2 OF NCHR	ROADW. P 350.	AYS SHALL BE DESI	GNED T	O MEET THE
		0F00 <i>1</i>			17.	ALL TEMPORARY MARKINGS SHALL BE	WATER	-BORNE PAINT OR A	PPROVE	ED TAPE.
NG SIGNS			ART AS		18.	ALL TRAFFIC CONTROL DEVICES ON TALLOCATIONS SHALL BE REFLECTORIZED	APERS A	ND AT ROADWAY/RA WITH TYPE C (STEA	AMP CLO	OSURE GHTS.
E MAINTA	INED AS SHO		N.		19	ALL REFLECTORIZED CONES SHALL BE				IT.
					20				ONS 851	
CONSIDI	ERED WHEN	LOCA	TING		20.	FOR ADDITIONAL INFORMATION.				2.07 110 000.
RAVEL.	VEL.				21.	1. CONTRACTOR SHALL HAVE MOVEABLE IMPACT ATTENUATORS (1 PER CLOSED LA ADVANCE OF THE WORK AREA FOR ALL TEMPORARY WORK ZONES OR AS DIREC)SED LANE) 5 DIRECTED
PERMIT PEDEST ITH APPI	PEDESTRIAN RIAN BYPAS ROPRIATE SI	NS TO S TYPI GNS S	TRAVEL E I, HALL BE		22.	PROVIDE CLEAR ZONE AROUND THE M	IOVEABL	E IMPACT ATTENUA	TOR DE	VICE AS
TRIANS TO DESTRIAI ENGINEEF	O THE OPPO N BYPASS TY R.	SITE S /PE II,	IDE OF AND AS		23.	A POLICE DETAIL IS REQUIRED FOR EA		SED LANE ON I-93 IN	ACCOF	
ICTED SH	IALL BE REVI	ERSED) FOR		24.	BLUNT ENDS OF BARRIER SHALL BE PE		ED AT ALL TIMES IN A	ACCORE	DANCE WITH
3SWALKS AINT AS [SHALL BE 1	2" WID ⁄ THE I)E RESIDENT		25.	ILLUMINATION REQUIRED FOR NIGHTT	=. IME WOF	RK TO A MINIMUM OF	EXISTI	NG LIGHTIN
					_		0		o	
		ικιτλι			26.	ADVANCED WORK ZONE SIGNS (W20-1	SEKIES	AND KZ-10a) ARE IN	ULUDEĒ	JUNIHE

						MEDFORD
						STATE FED. AID PROJ. NO. SHEET TOTAL
			<u>KEY</u>			MASS. BRI-093-1 (524) STP 093-1 27 60
			REFLEC	TORIZED DRUI	M	PROJECT FILE NO. 606255
P					ONE	TEMPORARY TRAFFIC CONTROL PLAN
						I YPICAL DETAILS
				RUCTION SIGN		
				RARY IMPACT A	ATTENUATOR	
	\RE/		TYPE III	BARRICADES		<u>GENERAL NOTES:</u>
	RK ₽			SED TRAFFIC F	LOW	1. ALL CONSTRUCTION SIGNING, DRUMS, BARRICADES AND OTHER DEVICES SHALL
	O N					CONFORM WITH THE 2003 MANUAL ON UNIFORM TRAFFIC CONTROL DEVICES (MUTCD)
			TYPE C	(STEADY) LIGF	IT	
	┊┊┊┊┊┊┊┊┊┊┊┊┊┊┊┊┊┊┊┊┊┊┊┊┊┊┊┊┊┊┊┊┊┊┊┊┊┊┊			LIGHTING UN	IT (SLU)	2. ALL DRUMS SHALL BE SET AT 20 ON CENTER MAX. ON LOCAL ROADWAY AND 50 ON CENTER MAX ON I-93 UNLESS OTHERWISE NOTED OR ADJUSTED BY THE RESIDENT
\\\\\\\\\\\\\						ENGINEER.
	$ (P) ^{R_{11-2}}$		SIGN (P	SLE CHANGEAE CMS)	BLE MESSAGE	3. ALL DRUMS SHALL BE APPROXIMATELY PLACED AND MOVED AS NECESSARY TO
			XXX WORK 7			MAINTAIN ADEQUATE ABUTTER ACCESS AT ALL TIMES. WORK MAY REQUIRE ADDITIONAL SIGNS, DRUMS AND OTHER TRAFFIC CONTROL DEVICES, GRADING AND
	T					TEMPORARY PAVEMENT FOR PASSAGE OF PEDESTRIAN, VEHICULAR AND EMERGENC
			MOVEAE	BLE IMPACT AT	TENUATOR	MAINTAIN SUCH ACCESS.
<u>AL LOCAL</u> N	ITS	-	P POLICE	OFFICER / FLA	GGER	4. GRADE SEPARATIONS IN EXCESS OF 2" DURING NON-WORKING HOURS WILL REQUIRE
			MOVEA	BLE PRECAST (CONCRETE	DELINEATION BY USE OF DRUMS.
			BARRIE	२		5. EXCAVATION EDGES IN EXCESS OF 4" DEEP SHALL BE PROTECTED DURING NON-WOR
				BLE BARRIER T	RANSFER	HOURS BY BACKFILLING WITH A WEDGE OF GRAVEL OR SOIL TO COMPACTED 1:4
				L		
	GHT DISTANCE					 TT MINIMUM LANE WIDTHS SHALL BE MAINTAINED AT ANY TIME DURING CONSTRUCTION.
PEED (MPH)	DISTANCE (FT)	TYPE (OF TAPER	TAPER L	ENGTH (L)	
20	115	LANE TAPE	R	AT LE	EAST L	DURING NON-WORKING HOURS.
25	155	SHIFTING 1	TAPER	AT LE	AST L/2	8. ADVISORY SPEED PLATES (W13-1) SHALL BE USED IF APPROPRIATE AND AS DIRECTED
30	200	SHOULDEF	R TAPER	AT LE	AST L/3	BY THE RESIDENT ENGINEER.
35	250	DOWNSTR	EAM TAPER	100 FT P	PER LANE	9. SIGNS INSTALLED ON PORTABLE STANDS REQUIRE 12 INCH MINIMUM MOUNTING
40	305					HEIGHT FROM THE ROADWAY SURFACE TO THE BOTTOM OF THE SIGN.
45	360	DESIG		TAPER L	ENGTH (L)	10. SIGNS INSTALLED ON PORTABLE STANDS PLACED AMONG CHANNELIZATION DEVICES
50	425	= 30 MPH	(SALEINIST)	Г .		REQUIRE A 36 INCH MINIMUM MOUNTING HEIGHT FROM THE ROADWAY SURFACE TO THE BOTTOM OF THE SIGN.
55 60	495	40 MP	H OR LESS	L=W	/S²/60	
65	645			L=	2/60 - 190'	THE ROADWAY OR SIDEWALK SURFACE TO THE BOTTOM OF THE SIGN.
70	730		L = V	$\frac{180'}{2} = 90'$	700 - 180	12. CONTRACTOR MAY CLOSE ONE LANE ON I-93 (NB AND/OR SB) FROM 8 PM TO 5 AM
75	820		$\frac{1}{2} = \frac{1}{2} = \frac{1}$	$(3(30^2)/60)/3 =$	15'	MONDAY THROUGH FRIDAY, UNLESS OTHERWISE DIRECTED BY THE RESIDENT
	020	ONOGEDEN				ENGINEER.
	SUG	GESTED AD		NING SIGN SI	PACING	13. CONTRACTOR MAY CLOSE TWO LANES ON I-93 (NB AND/OR SB) FROM 9 PM TO 5 AM MONDAY THROUGH FRIDAY, UNI ESS OTHERWISE DIRECTED BY THE RESIDENT
						ENGINEER.
	ROAD TYP	E		B	C	14. W20-8 SIGNS SHALL BE REPLACED BY W20-7a SIGNS WHEN FLAGGERS ARE USED IN
LOC	CAL OR LOW VOLUM	E ROADWAYS	6 350	350	350	LIEU OF POLICE OFFICER DETAILS.
	MOST OTHER ROA	ADWAYS	500	500	500	15. ALL IMPACT ATTENUATORS ON I-93 SHALL BE DESIGNED TO MEET THE CRITERIA FOR
F	REEWAYS AND EXP	RESSWAYS	1,000	1,500	2,640	- IEST LEVEL 3 OF NCHRP 350.
					I	16. ALL IMPACT ATTENUATORS ON LOCAL ROADWAYS SHALL BE DESIGNED TO MEET THE
PEDESTR	KIAN BYPASS NO	DIES				UNITERIA FUR TEST LEVEL 2 UF NUMKY 300.
1. ADDIT		ARNING SIGN	IS MAY BE NECES	SARY AS		17. ALL TEMPORARY MARKINGS SHALL BE WATER-BORNE PAINT OR APPROVED TAPE.
DETE	RMINED BY THE RES		NEER.			18. ALL TRAFFIC CONTROL DEVICES ON TAPERS AND AT ROADWAY/RAMP CLOSURE
2. CONT	ROLS FOR PEDESTI		ONLY, ARE SHO	WN.		LUCATIONS SHALL BE REFLECTORIZED DRUMS WITH TYPE C (STEADY) LIGHTS.
ELSE	WHERE.	LL DE IVIAIN I <i>I</i>	UVVIIC 60 ULIVII	N		19. ALL REFLECTORIZED CONES SHALL BE A MINIMUM OF 36 INCHES IN HEIGHT.
3. STRF	ET LIGHTING SHOUL			CATING		20. REFER TO MOVEABLE PRECAST CONCRETE BARRIER SPECIFICATIONS 853.3 AND 853.
CONT	ROL DEVICES.					FOR ADDITIONAL INFORMATION.
4. DIREC	CTION OF PEDESTRI	AN TRAVEL.				21. CONTRACTOR SHALL HAVE MOVEABLE IMPACT ATTENUATORS (1 PER CLOSED LANE)
ᇬᇉ᠇ᆈ			PEDESTRIANS T			ADVANUE OF THE WORK AREA FOR ALL TEMPORARY WORK ZONES OR AS DIRECTED THE RESIDENT ENGINEER.
J. IF THE	CENT TO IT AS SHO	WN IN PEDES	TRIAN BYPASS T	YPE I,		22 PROVIDE CI FAR ZONE AROLIND THE MOVEARLE IMPACT ATTENHATOD DEVICE AS
	PORARY CROSSWAL	KS WITH APP DESTRIANS T	PROPRIATE SIGNS	SHALL BE		REQUIRED BY THE MANUFACTURER.
THE S	STREET AS SHOWN I	N PEDESTRIA	AN BYPASS TYPE	II, AND AS		23. A POLICE DETAIL IS REQUIRED FOR EACH CLOSED LANE ON 1-93 IN ACCORDANCE WIT
DIREC	CIED BY THE RESID	ENT ENGINEE	:K.			MASSDOT STANDARDS.
6. R7 AN	ND R9 SERIES SIGNS	DEPICTED SI	HALL BE REVERS	ED FOR		24. BLUNT ENDS OF BARRIER SHALL BE PROTECTED AT ALL TIMES IN ACCORDANCE WITH
IRAV	EL IN OPPOSITE DIR		TAT SHUWN.			THE AASHTO ROADSIDE DESIGN GUIDE.
	OSED TEMPORARY	CROSSWALK	S SHALL BE 12" V	VIDE IE RESIDENT		25. ILLUMINATION REQUIRED FOR NIGHTTIME WORK TO A MINIMUM OF EXISTING LIGHTING
ENGI	NEER.	2				LEVELS.
8. TFMP	PORARY PEDESTRIA	N PATHWAYS	SHALL BE MAINT	AINED IN		26. ADVANCED WORK ZONE SIGNS (W20-1 SERIES AND R2-10a) ARE INCLUDED ON THE

PEDES

- 1. AD DE
- 2. CO VE ELS
- 3. ST CO
- 4. DIF
- 5. IF A TE INS TH DIR
- 6. R7 TR
- 7. PR SL ΕN
- 8. TE ACCORDANCE WITH THE AMERICANS WITH DISABILITIES ACT ACCESSIBILITY GUIDELINES (ADAAG), MASSACHUSETTS ARCHITECTURAL ACCESS BOARD (MAAB) REQUIREMENTS AND THE MANUAL ON UNIFORM TRAFFIC CONTROL DEVICES (MUTCD).

27. LOCAL ROADWAY MAY BE CLOSED AND DETOURED BEGINNING 6:00 PM ON FRIDAY ONLY AND SHALL BE OPEN AS SOON AS PRACTICAL BUT NO LATER THAN 5:00 AM MONDAY.

			SIGN SUM	ARY TABL	_
IDENTIFICATION	SIZE O	F SIGN	темт		COLOR
NUMBER	WIDTH	HEIGHT	IEXI	BACKGROUND	LEGEND
R3-1	24"	24"		WHITE	RED/BLACK
R7-1L	12"	18"		WHITE	RED
R7-1R	12"	18"		WHITE	RED
R9-9	30"	18"	SIDEWALK CLOSED	WHITE	BLACK
R9-11L	48"	24"	SIDEWALK CLOSED AHEAD CROSS HERE	WHITE	BLACK
R9-11R	48"	24"	SIDEWALK CLOSED AHEAD CROSS HERE	WHITE	BLACK
R11-2	48"	30"	ROAD CLOSED	WHITE	BLACK
R11-2b	48"	30"	RAMP CLOSED	WHITE	BLACK
R11-3a	60"	30"	ROAD CLOSED 3/4 MILES AHEAD LOCAL TRAFFIC ONLY	WHITE	BLACK
R11-4	60"	30"	ROAD CLOSED TO THRU TRAFFIC	WHITE	BLACK
W1-4L	30"	30"		ORANGE	BLACK
W1-4R	30"	30"		ORANGE	BLACK
W4-2R (LOCAL ROAD)	36"	36"		ORANGE	BLACK
W4-2R (INTERSTATE)	48"	48"		ORANGE	BLACK
W5-1	36"	36"	ROAD NARROWS	ORANGE	BLACK
W11-2	30"	30"	(ORANGE	BLACK
W13-1 *	24"	36"	XX M.P.H.	ORANGE	BLACK
W16-7pL	24"	12"		ORANGE	BLACK
W16-7pR	24"	12"		ORANGE	BLACK
W16-9p	24"	12"	AHEAD	ORANGE	BLACK
W20-1a	48"	48"	ROAD WORK 1 MILE	ORANGE	BLACK
W20-1c (LOCAL ROAD)	36"	36"	ROAD WORK AHEAD	ORANGE	BLACK
W20-2c	36"	36"	DETOUR AHEAD	ORANGE	BLACK

* SPEED CATEGORY, IF NECESSARY, TO BE DETERMINED BY MASSDOT

SIGN SUMMARY TABLE - CONTINUED

IDENTIFICATION	SIZE O	F SIGN	TEVT	COLOR			
NUMBER	WIDTH	HEIGHT	TEXT	BACKGROUND	LEGEND		
W20-3c	36"	36"	ROAD CLOSED AHEAD	ORANGE	BLACK		
W20-3cd	36"	36"	RAMP CLOSED AHEAD	ORANGE	BLACK		
W20-4	36"	36"	ONE LANE ROAD	ORANGE	BLACK		
W20-5aaR	48"	48"	RIGHT TWO LANES CLOSED 1 MILE	ORANGE	BLACK		
W20-5abR	48"	48"	NONT TWO LANES CLOSED 1/2 MILE	ORANGE	BLACK		
W20-5cR	36"	36"	RIGHT LANE CLOSED AHE AD	ORANGE	BLACK		
W20-8	36"	36"	POLICE OFFICER AHEAD	ORANGE	BLACK		
W21-5a (MOD)	48"	48"	SHOULDER CLOSED	ORANGE	BLACK		
M1-1 (93)	24"	24"	INTERSTATE 93	RED/BLUE	WHITE		
M1-5 (16)	24"	24"	16	WHITE	BLACK		
M1-5 (38)	24"	24"	38	WHITE	BLACK		
M1-5 (60)	24"	24"	60	WHITE	BLACK		
M3-1	24"	12"	NORTH	BLUE	WHITE		
M3-2	24"	12"	EAST	WHITE	BLACK		
M3-3	24"	12"	SOUTH	BLUE	WHITE		
M3-4	24"	12"	WEST	WHITE	BLACK		
M4-8	24"	12"	DETOUR	ORANGE	BLACK		
M4-9V (FELLSWAY W)	36"	36"	FELLSWAY W. DETOUR	ORANGE	BLACK		
M4-10L	48"	18"	DETOUR	ORANGE	BLACK		
M4-10R	48"	18"	DETOUR	ORANGE	BLACK		
M5-1L	21"	15"		WHITE	BLACK		
M5-1R	21"	15"		WHITE	BLACK		

	NUMBER OF
BORDER	SIGNS REQUIRED
BLACK	1
RED	2
RED	2
BLACK	2
BLACK	1
BLACK	1
BLACK	14
BLACK	1
BLACK	1
BLACK	2
BLACK	1
BLACK	2
BLACK	1
BLACK	4
BLACK	2
BLACK	5
BLACK	2
BLACK	2
BLACK	2
BLACK	1
BLACK	2
BLACK	5
BLACK	6

BORDER	NUMBER OF SIGNS REQUIRED	STATEFED. AID PROJ. NO.SHEET NO.TOTAL SHEETSMASS.BRI-093-1 (524) STP 093-12860
BORDER	SIGNS REQUIRED	MASS. BRI-093-1 (524) 28 60 STP 093-1
BLACK		
	4	TEMPORARY TRAFFIC CONTROL PLAN SIGN SUMMARY
BLACK	4	SHEET OF 2
BLACK	2	
BLACK	2	
BLACK	2	
BLACK	1	
BLACK	2	
BLACK	2	
WHITE	33	
BLACK	9	
BLACK	10	
BLACK	34	
WHITE	25	
BLACK	10	
WHITE	7	
BLACK	18	
BLACK	60	
BLACK	2	
BLACK	2	
BLACK	3	
BLACK	7	
	3	

	SIGN SUMMARY TABLE - CONTINUED											
IDENTIFICATION	SIZE O	F SIGN	TEVT		COLOR							
NUMBER	WIDTH	HEIGHT	IEXI	BACKGROUND	LEGEND							
M5-2L	21"	15"		WHITE	BLACK							
M6-1L	21"	15"		WHITE	BLACK							
M6-1R	21"	15"		WHITE	BLACK							
M6-2L	21"	15"		WHITE	BLACK							
M6-2R	21"	15"		WHITE	BLACK							
M6-3	21"	15"		WHITE	BLACK							
E5-1a (31)	78"	60"	EXIT 31 🖈	GREEN	WHITE							
E5-1 (TEMP)	78"	96"	TEMP EXIT	GREEN	WHITE							
SP-1	30"	12"	FELLSWAY W.	ORANGE	BLACK							
SP-2	24"	12"	ONLY	WHITE	BLACK							

	NUMBER OF SIGNS
BORDER	REQUIRED
BLACK	1
BLACK	8
BLACK	6
BLACK	7
BLACK	8
BLACK	22
WHITE	1
WHITE	1
BLACK	7
BLACK	5

SIGN DIMENSION DETAILS

_____ 1.7

NOTE:

1. SIGN LEGEND, LAYOUT AND SIZE SHALL COMPLY WITH MassDOT STANDARDS AND THE 2003 MUTCD (AS AMENDED).

		1-93	3 OVEI	MEDFO R SALEN	RD I STF	REET	EB	
		STATE	FEC). AID PROJ. NO	D.	SHEET NO.	TOTAL SHEETS]
		MASS.	BF	RI-093-1 (524) STP-093-1)	30	60	
			PROJE	CT FILE NO		606255	5	
			LIC	SHTING I	PLAN	IS		
		DEN	10LITI	ON AND		POR/	ARY	
				SHEETIC	JF Z			
	DEMOLITION NOTES:							
•	IDENTIFY, MAINTAIN AND PROTECT ALL PULLBOXES BELOW DECK TO REMAIN SYSTEMS MAY INCLUDE HIGH MAST LI MISCELLANEOUS CONDUITS, PULLBOXE RELOCATE PRIOR TO INTERRUPTION A COORDINATE WITH PHASING OF SUPER TO ANY ELECTRICAL DEMOLITION WOR	ACTIV IGHTIN S ANI ND RE RSTRU K.	TING (E DUF G, SU D INTE EMOVA CTURE	CONDUITS RING DEM RVEILLAN GRAL CA L OF SE REMOV	S AN MOLIT NCE, ABLE RVIC AL P	D FION. S. ES. PRIOR		
•	EXISTING LIGHTING CONDUIT ROUTED BE RELOCATED TO TEMPORARY LOCAT REMOVED AND STACKED.	BELOW TON.	/ NOR EXIST	THBOUN ING CON	D SH NDUIT	HOULD TO)ER S BE	HALL
•	EXISTING EMPTY SURVEILLANCE COND SHOULDER TO BE REMOVED AND STA	UIT LO CKED.	DCATEI	D BELOW	/ NO	RTHB	OUND	
•	PROVIDE NEW PULLBOXES ON FACE (CONDUITS BECOME EXPOSED AND AR	OF BR E ACC	RIDGE SESSIB	SUPPOR LE TO I	TS W NTER	HERE CEPT	-	
•	REMOVE ALL UNDERBRIDGE BRANCH	CIRCU	IT COI	NDUITS A	AND	WIRIN	G.	
•	EXISTING ABANDONED CONDUITS TO E ON NB SIDE). (1) ACTIVE CONDUIT AN SHALL BE RELOCATED AND REMAIN AN DEMOLITION WORK. UPON COMPLETIC REPLACEMENT, RESTORE TO PRE-CON CONDUIT IS LOCATED WITHIN THE SAF EXACT LOCATION IN THE FIELD AND E	BE REM ND IN CTIVE ON OF NSTRUE FETY W DIG SA	MOVED TEGRA TO M. NB A CTION VALKW.	(3 ON L CABLE AKE WAY AND SB CONDITI AY, COO RIOR TO	SB S (N FOI DECI ONS. DINA EXC	SIDE, NB SII R K ACTI TE AVATIO	2 DE) IVE ON.	

ABBREVIATIONS:

R&S	REMOVED AND STACKED
R&D	REMOVE AND DISPOSE

TEMPORARY LIGHTING NOTES:

- 1. PROVIDE NEW TEMPORARY LUMINAIRES BELOW DECK, CONNECT TO EXISTING LIGHTING BRANCH CIRCUITS.
- 2. AFTER COMPLETION OF THE NEW DECK, RE-INSTALL TEMPORARY LUMINAIRES IN SAME LOCATIONS CONNECTED TO EXISTING BRANCH CIRCUITS AND CONTROLS.
- 3. NEW TEMPORARY LUMINAIRES SHALL BE SIMILAR TO LITHONIA LIGHTING #TFA-250S-TA-277-SF-TFAWG-FCRA COMPLETE WITH LAMPS AND MOUNTING HARDWARE TO UNDER DECK GIRDER SUPPORTS AS PER MANUFACTURER'S RECOMMENDATIONS. FIX BEAM ANGLE IN DIRECTION OF PATH OF DRIVING LANE TO AVOID DIRECT GLARE.
- 4. UPON COMPLETION OF NB AND SB DECK REPLACEMENT, RE-INSTALL STOCKPILED LUMINAIRES AND APPURTENANCES TO PRE-CONSTRUCTION CONDITIONS. REMOVE AND DISPOSE OF ALL TEMPORARY LUMINAIRES, CABLES AND CONDUITS. RESTORE I-93 MAINLINE LIGHTING CONDUIT AND CABLES AND SURVEILLANCE CONDUIT TO PRE-CONSTRUCTION CONDITIONS. PROVIDE CONDUITS AND WIRING AS REQUIRED, MATCH EXISTING.
- 5. INTERCEPT EXISTING UNDERBRIDGE LIGHTING BRANCH CIRCUIT AND EXTEND TO NEW TEMPORARY UNDERBRIDGE LIGHTS, COORDINATE EXACT LOCATION OF JUNCTION POINT IN THE FIELD. PROVIDE CONDUITS AND WIRING AS REQUIRED, MATCH EXISTING.
- 6. SEE SHEET 2 OF 2 FOR DETAILS OF I-93 MEDIAN LIGHT POLE FOUNDATION WORK.

SALEM STREET (RTE. 60) EB UNDER DECK PART PLAN, BRIDGE NO. M-12-027

R:\50043635\Deliverables\50043635_BridgeDetailsSalemEB.dwg 11/4/2010 12:55:06 PM

SALEM STREET (RTE. 60) EB DETAILS, BRIDGE NO. M-12-027

	MEDFORD								
I-9:	3 OVER SALEM STR	REET	EB	_					
		QUEET	TOTAL						

STATE	FED. AID PROJ. NO.	NO.	SHEETS
MASS.	BRI-093-1 (524) STP-093-1	31	60
	PROJECT FILE NO.	606255	

LIGHTING PLANS DETAILS SHEET 2 OF 2

1. REMOVE BOND INHIBITING MATERIAL (DIRT, GREASE, LOOSELY BONDED AGGREGATE) FROM TOP SURFACE OF LIGHT POLE FOUNDATION BY MECHANICAL MEANS AND AIR BLAST METHODS. CHECK THE CONCRETE SURFACE AFTER CLEANING TO ENSURE THAT SURFACE IS FREE FROM ADDITIONAL LOOSE AGGREGATE OR THAT ADDITIONAL DELAMINATIONS ARE NOT PRESENT.

2. INSTALL STOP-TYPE COUPLERS AND ANCHOR BOLT EXTENSIONS ENSURING POSITIVE CONTACT AT STOP. COUPLERS SHALL HAVE MINIMUM $F_y = 50$ KSI. MINIMUM LENGTH OF THREADS ENGAGED EQUAL TO 1.25 X BOLT DIAMETER. ANCHOR BOLT EXTENSIONS SHALL BE SET PLUMB. PLACE REINFORCING AND EXTEND CONDUIT (MATCH EXISTING CONDUIT DIAMETER).

3. WET CONCRETE SO THAT SUBSTRATE IS SATURATED SURFACE DRY WITH NO STANDING WATER. 4. APPLY BONDING AGENT TO EXISTING CONCRETE SURFACE AND REINFORCING STEEL PER

5. FORM AND CAST NEW CONCRETE WITH 4000 PSI, 3/8", 660 CEMENT CONCRETE MASONRY.

6. ALL COUPLERS AND ANCHOR BOLT EXTENSIONS SHALL CONFORM TO BUY AMERICA PROVISIONS AND SHALL BE SUPPLIED BY ONE OF THE FOLLOWING MANUFACTURERS:

- PORTLAND BOLT AND MANUFACTURING COMPANY, INC. 3441 NEW GUAM ST., PORTLAND, OR
- HAYDON BOLTS, INC 1181 UNITY STREET PHILADELPHIA, PA 19124
- FASTENAL 2001 THEURER BLVD., WINONA, MN 55987

DESIGN

IN ACCORDANCE WITH THE 2010 SPECIFICATIONS OF THE AMERICAN ASSOCIATION OF STATE HIGHWAY AND TRANSPORTATION OFFICIALS LRFD BRIDGE DESIGN SPECIFICATIONS WITH CURRENT INTERIMS FOR HL-93 LOADING.

SURVEY AND BENCH MARK

ALL ELEVATIONS ARE BASED ON THE NORTH AMERICAN VERTICAL DATUM (NAVD) OF 1988. EXISTING CONDITIONS INFORMATION TAKEN FROM SURVEY PERFORMED BY: SMC SURVEYING AND MAPPING CONSULTANTS, 325 WOOD ROAD, SUITE 109, BRAINTREE, MA 02184.

DATE OF SURVEY: NOVEMBER 2010

BENCH MARKS:

STATION #35 PKNAIL N 2977905.11 E 763047.94 EL= 19.65 SET IN SIDEWALK UNDER BRIDGE STATION #37 PKNAIL N 2977827.82 E 763102.39 EL= 20.67 SET IN SIDEWALK UNDER BRIDGE

THE CONTRACTOR SHALL FIELD VERIFY ALL EXISTING BEAM SEAT ELEVATIONS CONTAINED IN THESE PLANS AS PART OF THE CONSTRUCTION OF THE NEW BEAM SEATS.

PLANS

PLANS FOR EXISTING BRIDGE MAY BE SEEN AT THE OFFICE OF THE BRIDGE ENGINEER, MASSACHUSETTS DEPARTMENT OF TRANSPORTATION, 10 PARK PLAZA, BOSTON, MASSACHUSETTS.

TRAFFIC

BRIDGE M-12-027 (3B6) PROPOSED SUPERSTRUCTURE REPLACEMENT SHALL BE CONSTRUCTED IN 2 STAGES. TRAFFIC MANAGEMENT SHALL BE IN ACCORDANCE WITH THE APPROVED TEMPORARY TRAFFIC CONTROL PLAN.

EXISTING CONDITIONS

DIMENSIONS SHOWN ARE TAKEN FROM ORIGINAL DESIGN DRAWINGS AND ARE NOT GUARANTEED. THE CONTRACTOR SHALL DETERMINE AND ESTABLISH ALL DIMENSIONS AND DETAILS NECESSARY FOR COMPLETION OF ALL WORK BY FIELD MEASUREMENT AND SURVEY. THE CONTRACTOR SHALL BE RESPONSIBLE AND NOT ORDER ANY MATERIAL OR COMMENCE ANY FABRICATION UNTIL HE HAS MADE THE REQUIRED MEASUREMENTS ON THE ACTUAL STRUCTURE AND THE EXTENT OF THE PROPOSED WORK HAS BEEN APPROVED BY THE ENGINEER.

DATE

TO BE PLACED ON THE INSIDE FACE OF THE NORTHWEST AND SOUTHEAST INDEPENDENT HIGHWAY GUARDRAIL TRANSITIONS. A SHEET SHOWING SIZE AND CHARACTER OF NUMERALS WILL BE FURNISHED. THE DATE USED SHALL BE THE LATEST YEAR OF THE CONTRACT COMPLETION AS OF THE DATE THE FIRST END POST IS CONSTRUCTED. ALL END POSTS SHALL FEATURE THE SAME DATE.

REINFORCEMENT

REINFORCING STEEL SHALL BE EPOXY COATED UNLESS NOTED AS "BLACK BAR" AND SHALL CONFORM TO THE REQUIREMENTS OF AASHTO M31 GRADE 60 (ASTM A615). ALL CONTACT LAP SPLICES SHALL BE AASHTO CLASS C. UNLESS LAP LENGTHS ARE NOTED ON THE PLANS OR LISTED AS FOLLOWS: <u>#5_BARS</u> MODIFICATION CONDITION <u>#4_BARS</u> 1. NONE 21" 26" 36"

- 29" 2. 12 INCHES OF CONCRETE BELOW BAR
- 3. COATED BARS, COVER < 3db, OR CLEAR 31"
- SPACING < 6db
- 25" 4. COATED BARS, ALL OTHER CASES 35" 5. CONDITION 2 AND 3
- 6. CONDITION 2 AND 4

34" IF THE ABOVE BARS ARE SPACED 6 INCHES OR MORE ON CENTER, THE LAP LENGTH SHALL BE 80% OF THE LAP LENGTH GIVEN ABOVE.

DOWEL BAR SPLICERS

IF LAPPING REINFORCEMENT ACROSS STAGE CONSTRUCTION JOINTS IS NOT FEASIBLE, REINFORCING BARS SHALL BE MADE CONTINUOUS CONSTRUCTION JOINTS BY DOWEL BAR SPLICERS. DOWEL BAR SPLICERS SHALL HAVE THE SAME COATINGS AS THE REINFORCING BARS THEY ARE SPLICING.

CONCRETE MIXES

THE FOLLOWING CONCRETE MIXES ARE TO BE USED:

4000 PSI. 3/60 CEMENT CONCRETE: CONCRETE PEDESTALS; TRANSVERSE SHEAR KEYS; BEAM SEAT EXTENSIONS; SUBSTRUCTURE REPAIRS 4000 PSI. 3/4 IN, 610 CEMENT CONCRETE: PROPOSED WINGWALL CAPS

4000 PSI, 3/4 IN, 585 HP CEMENT CONCRETE: DECKZ

SECTIONS ON MODULAR UNITS

5000 PSI, 3/4 IN, 685 HP CEMENT CONCRETE: CF-PL3 BARRIERS 4000 PSI, 1½", 565 CEMENT CONCRETE: INDEPENDENT HIGHWAY GUARDRAIL TRANSITION BASES HIGH EARLY STRENGTH CEMENT CONCRETE: CLOSURE POURS

DRILLING AND GROUTING DOWELS

IT IS ASSUMED THAT THE GROUT TO BE USED FOR DRILLING AND GROUTING DOWELS INTO THE EXISTING SUBSTRUCTURE AND WINGWALLS IS A CEMENTITIOUS GROUT LISTED ON THE MASSDOT QUALIFIED CONSTRUCTION MATERIALS LIST. HILTI HIT-HY 150 MAX SD OR HILTI HIT-RE 500-SD ARE ACCEPTABLE STRUCTURAL EPOXY SUBSTITUTIONS CONSISTENT WITH THE REQUIREMENTS OF MASSDOT'S ENGINEERING DIRECTIVE E-10-001. THE DEPTH OF DRILLED HOLES SHALL REMAIN THE SAME AS SHOWN ON THESE PLANS, HOWEVER THE DIAMETER OF THE DRILLED HOLE SHALL BE $\frac{1}{2}$ " LARGER THAN THE BAR.

UTILITIES

THE CONTRACTOR SHALL LOCATE AND PROTECT FROM DAMAGE ALL EXISTING UTILITIES.

SCALES

SCALES AS NOTED ON PLANS ARE NOT APPLICABLE TO REDUCED SIZE PRINTS. FOR 1/3 SIZE PRINTS DIVIDE SCALE BY TWO.

_____ GENERAL NOTES ______

39"

31" 44"

43"

SEISMIC GROUND SHAKING HAZARD

SEISMIC GROUND SHAKING HAZARD IN ACCORDANCE WITH THE 2009 AASHTO FOR LRFD SEISMIC BRIDGE DESIGN:

DESIGN SPECTRA:

As = 0.076Sds = 0.154Sd1 = 0.039

SITE CLASS = E

SEISMIC DESIGN CATEGORY (SDC) = A

STRUCTURAL STEEL

ALL STRUCTURAL STEEL SHALL BE AASHTO M270 GRADE 50W UNLESS NOTED

ESTIMATED QUANTITI

(NOT GUARANTEED)

ALTERATION TO BRIDGE STRUCTURE NO M-12-02

SUGGESTED CONSTRUCTION SEQUENCE

WORK PRIOR TO WEEKEND CLOSURES:

- 1. INSTALL TEMPORARY PRECAST CONCRETE BARRIER IN SHOULDERS ACRO BRIDGE DECK, CREATING A SAFE WORK ZONE AT THE FASCIA AND MED
- 2. REMOVE FASCIA AND MEDIAN BARRIERS.
- 3. REMOVE AND RECONSTRUCT PORTIONS OF WINGWALLS.
- . RECONSTRUCT BEAM SEATS WHERE REQUIRED, SUPPORT AND ALTERATION EXISTING BEAMS MAY BE NECESSARY.
- 5. DEMOLISH ALL EXISTING ABANDONED UTILITIES AND CONDUIT WHICH AR REMOVED AND NOT PART OF THE PERMANENT STRUCTURE. PRIOR TO . WORK COMMENCING ALL UTILITIES SHALL BE CLEARLY IDENTIFIED.
- 6. PRIOR TO THE DEMOLITION OF THE NORTHBOUND ROADWAY TEMPORARI RELOCATE THE UTILITIES TO BE RETAINED TO THE SOUTHBOUND STRUC
- PROTECT THEM FROM DAMAGE DURING DEMOLITION AND CONSTRUCTION 7. REPAIR SUBSTRUCTURES, NOTE THAT MUCH OF THIS WORK CAN OCCU ANYTIME DURING THE PROJECT.

WORK DURING THE WEEKEND CLOSURE:

- 1. ESTABLISH TRAFFIC MANAGEMENT PLAN ON LOCAL STREET (IF APPLICAE 2. MOBILIZE EQUIPMENT AND MATERIALS THAT ARE TO BE USED BELOW T INCLUDING TIMBER MATS, STEEL PLATES OR GRAVEL USED TO PROTECT EXISTING ROADWAY BELOW.
- 3. ESTABLISH TRAFFIC MANAGEMENT PLAN ON I-93 AND DETOUR TRAFFIC THE BRIDGE.
- 4. DEMOLISH EXISTING DECK AND STEEL BEAM SUPERSTRUCTURE, TAKING TO DAMAGE ANY SUBSTRUCTURE ELEMENTS OR COMPONENTS THAT ARE AND BE INCORPORATED INTO THE FINAL STRUCTURE.
- 5. EXCAVATE DOWN TO APPROACH SLAB AT ABUTMENT JOINTS.
- 6. PLACE MODULAR UNITS.
- 7. FORM CLOSURE POUR AREAS.
- 8. PLACE CLOSURE POUR CONCRETE IN BOTH LONGITUDINAL AND
- TRANSVERSE JOINTS. 9. REMOVE FORMS AT END OF SLAB AT ABUTMENTS ONCE CONCRETE HAS
- 10. INSTALL TEMPORARY PRECAST CONCRETE BARRIERS IN SHOULDERS ACR
- BRIDGE DECK, CREATING A SAFE WORK ZONE AT THE FASCIA AND MED
- 11. DEMOBILIZE CONSTRUCTION EQUIPMENT, CLEAN UP AND PREPARE WORK TRAFFIC.

12. RE-ESTABLISH NORMAL TRAFFIC PATTERN AND OPEN BRIDGE TO TRAFFIC.

WORK AFTER WEEKEND CLOSURES:

- 1. INSTALL BRIDGE BARRIERS AND MEDIAN AND FASCIA WITHIN WORK ZONE CREATED
- USING TEMPORARY PRECAST CONCRETE BARRIERS. 2. COMPLETE WINGWALL MODIFICATIONS INCLUDING INDEPENDENT HIGHWAY GUARD
- TRANSITIONS.
- 3. INSTALL CONCRETE TRANSVERSE SHEAR KEYS ON STRUCTURES.
- 4. INSTALL MEMBRANE WATERPROOFING SYSTEM AND PAVEMENT OVERLAYS (USING NIGHTTIME LANE CLOSURES OR ON SUBSEQUENT WEEKENDS).
- 5. INSTALL BRIDGE JOINTS AT ABUTMENTS.
- 6. COMPLETE REPAIRS TO SUBSTRUCTURES.

JIDE SPECIFICATIONS	STATEFED. AIDPROJ. NO.SHEET NO.TOTAL SHEETSMASS.BRI-093-1 (524) STP 093-13360PROJECTFILENO.606255GENERALNOTES
DTHERWISE HEREIN.	
5	
<u>QUANTITY</u> 1 LS	
S THE N.	
OF THE	
TO BE 1 OF THIS	
RE AND	
AT	
:). BRIDGE, HE	
FF OF	
ARE NOT TO REMAIN	
SET	
SET. SS THE N. ZONE FOR	

		<u> MAY 18, 2011</u>	ISSUED FOR CONSTRUCTION
		DATE	DESCRIPTION
		USE	ONLY PRINTS OF LATEST DATE
SHEET 2	OF 25 SHE	ETS BRID	DGE NO. M-12-027 (3B6)

	SOUTH /	ABUTME	NT – B	BEAM SE	EAT ELE	VATIONS												
G6	G7	G8	G9	G10	G11	G12	G13	G14	G15	G16	G17	G18	G19	G20	G21	G22	G23	G24
9.32	39.08	38.84	38.59	38.35	38.11	37.87	38.50	38.50	38.26	38.02	37.77	37.53	37.29	37.05	36.81	36.57	36.75	37.10
3.30	38.00	37.73	37.50	37.19	36.95	36.68	37.57	37.55	37.30	37.02	36.73	36.73	36.49	36.20	36.00	35.75	35.46	35.72
.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50
.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50
.31	2.31	2.31	2.31	2.31	2.31	2.31	2.31	2.31	2.31	2.31	2.31	2.31	2.31	2.31	2.31	2.31	2.31	2.31
.92	8.62	8.96	8.82	9.64	9.63	9.95	6.91	7.14	7.19	7.65	8.23	5.32	5.30	5.88	5.37	5.47	11.18	12.25
.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
3.96	38.72	38.48	38.23	37.99	37.75	37.51	38.15	38.14	37.90	37.66	37.42	37.17	36.93	36.69	36.45	36.21	36.39	36.74

	STATE	FED. AID PROJ. NO.	SHEET NO.	TOTAL SHEETS					
	MASS.	BRI-093-1 (524) STP 093-1	37	60					
	PROJECT FILE NO. 606255								
SOUTH ABUTMENT									
	_								

NOTES ON BEAM SEAT ELEVATIONS:

- 1. CONCRETE PEDESTALS ARE BEING PROVIDED AT ALL BUT FOUR BEAM SEAT LOCATIONS FOR ALL SUBSTRUCTURE UNITS. 2. BOTTOM OF BEAM ELEVATION PROVIDED TO ESTABLISH
- MODULAR UNIT GEOMETRY FOR DECK CASTING AND FOR SETTING MODULAR UNITS IN THE FIELD. 3. EXISTING BEAM SEAT IS THE EXISTING ELEVATION AT THE
- CENTERLINE OF BEARING FOUND BY SURVEY. 4. TOP OF PEDESTAL ELEVATION IS THE BOTTOM OF BEAM ELEVATION LESS THE PROPOSED BEARING THICKNESS, THE 13 INCH THICK SOLE PLATE (OR THE 1 INCH THICK SOLE PLATE AND THE TAPERED PLATE THICKNESS AT THE CENTERLINE OF BEARING) AND A 1/3 INCH THICK SHIM PLATE.
- 5. GIRDERS ARE TO COME TO THE FIELD WITH SOLE PLATES WELDED TO THE BOTTOM FLANGE
- 6. ELASTOMERIC BEARINGS ARE TO BE SET DIRECTLY ON THE BEAM SEAT OR PEDESTAL CONCRETE AND SUFFICIENT SHIMS SHALL BE USED TO MAKE UP THE DIFFERENCE.
- DIM. X IS THE ANTICIPATED TOTAL THICKNESS OF SHIMS REQUIRED TO SET THE BEARING ON THE EXISTING SEAT AND PLACE THE BOTTOM OF BEAM SEAT AT THE PROPER ELEVATION. FIELD VERIFY PROPOSED BEAM SEAT ELEVATION AND ADJUST SHIM THICKNESS ACCORDINGLY. MINIMUM SHIM THICKNESS SHALL BE 🚽".

NOTES ON BEAMS SEAT CONSTRUCTION:

- 1. CLEAN AND ROUGHEN EXISTING BEAM SEAT UNDER PEDESTALS AND SHEAR KEYS.
- 2. H DUE TO PROXIMITY OF EXISTING BEAM SEAT STEP, THE ELEVATION OF THE HIGHER BEAM SEAT WAS USED.
- 3. S# EXIST. STRINGER
- 4. G# PROP. GIRDER
- 5. PROPOSED TOP OF DECK IS TOP OF DECK CONCRETE AT BACK FACE OF BACKWALL
- 6. WHERE EXISTING PEDESTALS MUST BE REMOVED DUE TO INTERFERENCE WITH PROPOSED WORK:
 - A. EXISTING PEDESTALS TO BE REMOVED SHALL BE CUTOFF FLUSH TO THE TOP OF THE EXISTING BEAM SEAT
 - REMAINING EXPOSED REINFORCEMENT AND ANCHOR BOLTS THAT ARE NOT BEING ENCASED BY ANY PROPOSED CONCRETE SHALL BE REPAIRED BY EXCAVATING DOWN AND CUTTING OFF THE VERTICAL STEEL EXTENDING INTO THE PEDESTAL A MINIMUM OF 2" BELOW THE TOP FACE OF EXISTING CONCRETE. THE EXCAVATED HOLE SHALL BE PATCHED USING CEMENTITIOUS MORTAR
 - THE TOP SURFACE OF THE CONCRETE TO REMAIN BEYOND THE PROPOSED WORK SHALL BE MADE TROWEL SMOOTH BY APPLICATION OF A THIN LAYER OF CEMENTITIOUS MORTAR FOR PATCHING.

BASED UPON FIELD SURVEY PERFORMED <u>LEGEND</u> ON 3/1/11 THROUGH 3/3/11

SHEET 6 OF 25 SHEETS

- = SPALLED CONCRETE - SEE SHEET 13 FOR SIZE BY REFERENCE NUMBER
- = DELAMINATED CONCRETE SEE SHEET 13 FOR SIZE BY REFERENCE NUMBER = CRACK
- ALL CRACKS ARE HAIRLINE (HL) X FULL HEIGHT (F.H.) UNLESS NOTED OTHERWISE C1 – 1/₁₆" X F.H.

ISSUED FOR CONSTRUCTION DESCRIPTION MAY 18, 2011 DATE

USE ONLY PRINTS OF LATEST DATE

BRIDGE NO. M-12-027 (3B6)

G44	G45	G46	G47	G48
36.40	36.16	35.92	36.11	36.46
35.13	35.02	34.90	34.79	34.68
1.50	1.50	1.50	1.50	1.50
0.50	0.50	0.50	0.50	0.50
3.25	3.25	3.25	3.25	3.25
0.02	8.49	6.96	10.57	16.13
0.00	0.00	0.00	0.00	0.00
35.97	35.72	35.48	35.67	36.02
G20	G21	G22	G23	G24
37.08	36.84	36.60	36.79	37.13
35.13	35.01	34.90	34.78	34.67
1.50	1.50	1.50	1.50	1.50
0.50	0.50	0.50	0.50	0.50
2.31	2.31	2.31	2.31	2.31
9.14	17.61	16.08	19.69	25.25
0 00		0 00	0 00	0 0 0
0.00	0.00	0.00	0.00	0.00
36.72	36.48	36.24	36.43	36.78

TABLE NOTES:

1. SEE NOTES ON BEAM SEAT ELEVATIONS ON SHEET 6. 2. PEDESTAL HEIGHT = PEDESTAL DIMENSION ABOVE BEAM SEAT. 3. REMOVAL OF EXISTING CONCRETE = DEPTH OF EXCAVATION INTO SEAT (MAX. 2") 4. DIM X = SEE SHIM STACK DETAIL ON SHEET 10 5. DIM Y = SEE TYPICAL CONCRETE PEDESTAL DETAIL ON SHEET 10 6. DIM E = SEE TYPICAL CONCRETE PEDESTAL DETAIL ON SHEET 10

STATE FED. AID PROJ. NO. SHEET TOTAL NO. SHEETS

PROJECT FILE NO. 606255

SOUTH PIER

MASS.

BRI-093-1 (524) STP 093-1 38 60

NOTES ON BEAMS SEAT CONSTRUCTION: 1. CLEAN AND ROUGHEN EXISTING BEAM SEAT UNDER

PEDESTALS AND SHEAR KEYS.

- 2. S# EXIST. STRINGER
- G# PROP. GIRDER
- PROPOSED TOP OF DECK IS TOP OF DECK CONCRETE AT BACK FACE OF BACKWALL
- 5. WHERE EXISTING PEDESTALS MUST BE REMOVED DUE TO INTERFERENCE WITH PROPOSED WORK:A. EXISTING PEDESTALS TO BE REMOVED SHALL BE
 - CUTOFF FLUSH TO THE TOP OF THE EXISTING BEAM SEAT.
 - B. REMAINING EXPOSED REINFORCEMENT AND ANCHOR BOLTS THAT ARE NOT BEING ENCASED BY ANY PROPOSED CONCRETE SHALL BE REPAIRED BY EXCAVATING DOWN AND CUTTING OFF THE VERTICAL STEEL EXTENDING INTO THE PEDESTAL A MINIMUM OF 2" BELOW THE TOP FACE OF EXISTING CONCRETE. THE EXCAVATED HOLE SHALL BE PATCHED USING CEMENTITIOUS MORTAR.
 - C. THE TOP SURFACE OF THE CONCRETE TO REMAIN BEYOND THE PROPOSED WORK SHALL BE MADE TROWEL SMOOTH BY APPLICATION OF A THIN LAYER OF CEMENTITIOUS MORTAR FOR PATCHING.

LEGEND BASED UPON FIELD SURVEY PERFORMED ON 3/1/11 THROUGH 3/3/11
= SPALLED CONCRETE - SEE SHEET 13 FOR SIZE BY REFERENCE NUMBER
= DELAMINATED CONCRETE – SEE SHEET 13 FOR SIZE BY REFERENCE NUMBER
= CRACK
ALL CRACKS ARE HAIRLINE (HL) X FULL HEIGHT (F.H.) UNLESS NOTED OTHERWISE. C1 - HL X 4'L $C5 - HL MAP CR'SC2 - \frac{1}{4}'' X 2.5'L C6 - HL X 1.5'LC3 - HL X 2'L$ $C7 - HL X 2.5'L$ $C4 - HL X 3'L$ $C8 - HL X 1'L$
MAY 18 2011 ISSUED FOR CONSTRUCTION
DATE DESCRIPTION
USE ONLY PRINTS OF LATEST DATE
SHEET 7 OF 25 SHEETS BRIDGE NO. $M-12-027$ (3B6)

G68	G69	G70	G71	G72
36.89	36.65	36.41	36.60	36.95
35.14	35.02	34.90	34.79	34.67
1.50	1.50	1.50	1.50	1.50
0.50	0.50	0.50	0.50	0.50
2.31	2.31	2.31	2.31	2.31
16.73	15.23	13.73	17.37	22.97
0.00	0.00	0.00	0.00	0.00
36.53	36.29	36.05	36.24	36.59
G44	G45	G46	G47	G48
36.22	35.98	35.74	35.93	36.28
35.14	35.02	34.91	34.79	34.68
1.50	1.50	1.50	1.50	1.50
0.50	0.50	0.50	0.50	0.50
3.25	3.25	3.25	3.25	3.25
7.70	6.20	4.71	8.35	13.94
0.00	0.00	0.00	0.00	0.00
35.78	35.54	35.30	35.49	35.84

TABLE NOTES:

- SEE NOTES ON BEAM SEAT ELEVATIONS ON SHEET 6.
- PEDESTAL HEIGHT = PEDESTAL DIMENSION ABOVE BEAM SEAT. REMOVAL OF EXISTING CONCRETE = DEPTH OF EXCAVATION INTO SEAT (MAX. $2^{"}$)
- DIM X = SEE SHIM STACK DETAIL ON SHEET 10
- 5. DIM Y = SEE TYPICAL CONCRETE PEDESTAL DETAIL ON SHEET 10
- 6. DIM E = SEE TYPICAL CONCRETE PEDESTAL DETAIL ON SHEET 10

NOTES ON BEAMS SEAT CONSTRUCTION: 1. CLEAN AND ROUGHEN EXISTING BEAM SEAT UNDER

- PEDESTALS AND SHEAR KEYS.
- 2. S# EXIST. STRINGER
- G# PROP. GIRDER
- 4. PROPOSED TOP OF DECK IS TOP OF DECK CONCRETE AT BACK FACE OF BACKWALL 5. WHERE EXISTING PEDESTALS MUST BE REMOVED DUE TO
 - INTERFERENCE WITH PROPOSED WORK: A. EXISTING PEDESTALS TO BE REMOVED SHALL BE CUTOFF FLUSH TO THE TOP OF THE EXISTING BEAM SEAT.
 - B. REMAINING EXPOSED REINFORCEMENT AND ANCHOR BOLTS THAT ARE NOT BEING ENCASED BY ANY PROPOSED CONCRETE SHALL BE REPAIRED BY EXCAVATING DOWN AND CUTTING OFF THE VERTICAL STEEL EXTENDING INTO THE PEDESTAL A MINIMUM OF 2" BELOW THE TOP FACE OF EXISTING CONCRETE. THE EXCAVATED HOLE SHALL BE PATCHED USING CEMENTITIOUS MORTAR
 - THE TOP SURFACE OF THE CONCRETE TO REMAIN BEYOND THE PROPOSED WORK SHALL BE MADE TROWEL SMOOTH BY APPLICATION OF A THIN LAYER OF CEMENTITIOUS MORTAR FOR PATCHING.

BASED UPON FIELD SURVEY PERFORMED LEGEND ON 3/1/11 THROUGH 3/3/11

= SPALLED CONCRETE - SEE SHEET 13 FOR SIZE BY REFERENCE NUMBER

= DELAMINATED CONCRETE - SEE SHEET 13 FOR SIZE BY REFERENCE NUMBER _____ = CRACK

ALL CRACKS ARE HAIRLINE (HL) X FULL HEIGHT (F.H.) UNLESS NOTED OTHERWISE

C1 – HL X 3'L C2 – HL X 1.5'L C3 – HL X 1'L

> ISSUED FOR CONSTRUCTION DESCRIPTION MAY 18, 2011 DATE

USE ONLY PRINTS OF LATEST DATE

BRIDGE NO. M-12-027 (3B6) SHEET 8 OF 25 SHEETS

STATE FED. AID PROJ. NO. SHEET TOTAL NO. SHEETS BRI-093-1 (524) STP 093-1 39 60 MASS. PROJECT FILE NO. 606255

NORTH PIER

NORTH ABUTMENT – BEAM SEAT ELEVATIONS	
54 G55 G56 G57 G58 G59 G60 G61 G62 G63 G64 G65 G66 G67* G68 .94 38.70 38.46 38.22 37.98 37.74 37.50 38.13 38.13 37.88 37.64 37.40 37.16 36.92 36.68	G69 G70 G71 G72 36.44 36.20 36.38 36.73 MASS: BRI-093-1 (524) 40 60
.90 37.90 37.66 37.37 37.16 36.87 36.61 37.50 37.48 37.20 36.93 36.66 36.41 36.41 36.15 50 1.50<	35.90 35.64 35.39 35.64 1.50 1.50 1.50 1.50
50 0.50 0	2.63 2.88 0.50 0.50 2.31 2.31 2.31 2.31
22 5.33 5.33 5.92 5.48 6.16 6.37 3.19 3.43 3.88 4.22 4.57 4.68 0.00 0.00 00 0.00 0.00 0.00 0.00 0.81 0.57 0.12 0.00 0.00 0.00 0.00 0.00	0.00 0.00 7.62 8.82 0.00 0.00 0.00
.59 38.34 38.10 37.86 37.62 37.38 37.14 37.77 37.77 37.52 37.28 37.04 36.80 36.41 36.15	35.90 35.64 36.02 36.38
€ I-93 68'-0" HIGHWAY GUARDRAIL TRANSITION CF-PL3 (TYP.)	<u>TABLE NOTES:</u> 1. SEE NOTES ON BEAM SEAT ELEVATIONS ON SHEET 6.
-7'-4" -7'-4" LIMIT OF EXIST. -7'-4" -7'-4" APPROACH SLAB (TYP.) - EXIST. CONST. JT. - TRANSVERSE 0 SHEAR KEY (TYP.) 0 PROP. SHIM 0 STACKS	 2. PEDESTAL HEIGHT = PEDESTAL DIMENSION ABOVE BEAM SEAT. 3. REMOVAL OF EXISTING CONCRETE = DEPTH OF EXCAVATION INTO SEAT (MAX. 2") 4. DIM X = SEE SHIM STACK DETAIL ON SHEET 10 5. DIM Y = SEE TYPICAL CONCRETE PEDESTAL DETAIL ON SHEET 10 6. DIM E = SEE TYPICAL CONCRETE PEDESTAL DETAIL ON SHEET 10 7. G67* - EXISTING BEAM SEAT AT G32 TO BE MODIFIED AS SHOWN ON SHEET 10 8. G65 & G66 - PARTIAL EXCAVATION OF ADJACENT STEP REQUIRED NOTES ON BEAMS SEAT CONSTRUCTION: 1. CLEAN AND ROUGHEN EXISTING BEAM SEAT UNDER PEDESTALS AND SHEAT KEYS.
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	 2. E - REMOVAL OF EXISTING CONCRETE, EXCAVATE BEAM SEAT TO PROVIDE MIN. 4" PEDESTAL. 3. H - DUE TO PROXIMITY OF EXISTING BEAM SEAT STEP, THE ELEVATION OF THE HIGHER BEAM SEAT WAS USED. 4. S# - EXIST. STRINGER 5. G# - PROP. GIRDER 6. PROPOSED TOP OF DECK IS TOP OF DECK CONCRETE AT BACK FACE OF BACKWALL 7. WHERE EXISTING PEDESTALS MUST BE REMOVED DUE TO INTERFERENCE WITH PROPOSED WORK.
$11 \text{ SPA. } @ 6'-\frac{1}{2}" = 66'-5\frac{1}{2}" \qquad \qquad$	A. EXISTING PEDESTALS TO BE REMOVED SHALL BE CUTOFF FLUSH TO THE TOP OF THE EXISTING BEAM
	SEAT. B. REMAINING EXPOSED REINFORCEMENT AND ANCHOR
SCALE: $\frac{1}{8}$ " = 1'-0"	 PROPOSED CONCRETE SHALL BE REPAIRED BY EXCAVATING DOWN AND CUTTING OFF THE VERTICAL STEEL EXTENDING INTO THE PEDESTAL A MINIMUM OF 2" BELOW THE TOP FACE OF EXISTING CONCRETE. THE EXCAVATED HOLE SHALL BE PATCHED USING CEMENTITIOUS MORTAR. C. THE TOP SURFACE OF THE CONCRETE TO REMAIN BEYOND THE PROPOSED WORK SHALL BE MADE TROWEL SMOOTH BY APPLICATION OF A THIN LAYER OF CEMENTITIOUS MORTAR FOR PATCHING.
	RASED LIDON FIELD SURVEY DEDEODMED
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	LEGEND ON 3/1/11 THROUGH 3/3/11 = SPALLED CONCRETE - SEE SHEET 13 FOR SIZE BY REFERENCE NUMBER = DELAMINATED CONCRETE - SEE SHEET 13 FOR SIZE BY REFERENCE NUMBER = CRACK ALL CRACKS ARE HAIRLINE (HL) X FULL HEIGHT (F.H.) UNLESS NOTED OTHERWISE
EXISTING TOP OF BACKWALL ASSUMED LIMITS BASED ON FIELD OBSERVATION BACKWALL EL. 38.17 WINGWALL EL. 38.17 EL. 39.59 EL. 39.59	$\begin{array}{rcl} C1 & - & \frac{1}{8} & X & 1'L \\ C2 & - & \frac{1}{8} & X & 7'L \\ C3 & - & \frac{1}{8} & X & 2'L \end{array}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
VALL DEMO ELEVATION	MAY 18, 2011 ISSUED FOR CONSTRUCTION DATE DESCRIPTION
SCALE: $\frac{1}{8}^{"} = 1' - 0"$	USE ONLY PRINTS OF LATEST DATE SHEET 9 OF 25 SHEETS BRIDGE NO. M-12-027 (3B6)

NOTED REPAIR LOCATIONS

<u>S. ABUTMENT NOTES</u> 1. FH x 6'-8" 2. $\frac{1}{2}$ " SCALING x FW x FD ON SEAT 3. VARIABLE HEIGHT x 11'-7" 4. 8" x 3'-9" 5. 7" x 2' 6. 7" x 2'-8" 7. VARIABLE HEIGHT x 10'-10" 8. 1" SCALING x FW x FD ON SEAT 9. VARIABLE HEIGHT X 21' 10. 1'-6"ø SP.L 11. 8" X 5'-7" 12. FH x 8" SP. S. PIER SOUTH FACE NOTES 13. FH x 2' 14. 1' x 7'-6" 15. 1'-10" x 6' 16. 2'-6" x 6' 17. 1'-6" x 1' 18. 3' x 2' 19. 1'-4" x 2' 20. 3' x 3' 21.9" x 6' 22. 2'-8" x 4'-6" 23. FH x 2' 24. 1'-3" x 5' 25. 1'-10" x 2'-9" 26. 3'-6" x 1'-8" 27. TOP CAP ERODED 2' WIDE x FL 28. 2' x 2' 29. 2' x 2'-6" 30. 1'Ø SP. ON BOT. 31. FW x 2' DELAM. ON BOT. <u>S. PIER NORTH FACE NO</u>TES 32. 1' x 1' 33. 8" x 1'-8" 34. 3' x 2'-4" 35. 2'-6" x 1'-4" 36. 1' x 2'-6" 37. FH x 6" 38. 1' x 2' 39. FH x 8'-6" 40.8" x 3' 41.1' x 6' 42.2'-6" x 5' 43. FH x 1'-4" 44.10" x 5' 45. 4" x 4'-2" 46.10" x 3' 47.1'ø 48. 2'-8" x 2' 49.1'-8" x 1'-6" 50. 3'-6" x 1'-4" 51. 4'-6" x 1' 52. 1'-10" x 1'-4" 53.6" x 1' 54.1'-2" x 10" 55.1" x 3'-6" 56. FH x 2'-4" 57.1'-4" x 6" N. PIER SOUTH FACE NOTES 58.10" x 2' 59.9" x 3'-4" 60.10" x 12'-8" 61.10" x 5' 62.10" x 5'-10" 63.5" x 1'-10" 64. 1'-6" x 1'-6" 65. 6" x 1'-8" 66. 2'-2" x 1'-2" DELAM. ON BOT. 67.10" x 13' 68.10" x 8'-9" 69. 1'-3" x 3' 70. 4'-6" x 2' 71. 8" x 5'-4" 72. 3' x 2'-10" 73. 3' x 2' DELAM. ON BOT.

74. 3'-8" x 1'-10" 75.2'-2" × 2' 76. 2'-9" x 2'-2" 77. 1'-4" x 1' 78. 7" x 1'-8" 79. 9" x 2'-6" 80. 1'-8" x 1'-8' 81. 1'-8" x 1'-2" 82. 1'-4" x 1'-4" 83. 3'-4" x 1'-8" 84.9" x 7" 85. 1'-2" x 5'-5" 86. 1' x 1'-10" 87. 1'-10" x 4'-9" 88.1'-6" x 1' 89. 2' x 4'-10" N. ABUTMENT NOTES 90. 1'-2" x 3'-6" 91.8" x 2'-6" 92. FH x 1' 93. VARIABLE HEIGHT x 6' 94. 6" x 6" SP. 95. VARIABLE HEIGHT x 2'-2''96. 8" x 2' 97. VARIABLE HEIGHT x 3'-2''98. FH x 5'-4" 99. FH x 6'-8" 100. 5" x 3' 101. FH x 5'

N. PIER NORTH FACE NOTES

SURFACE PREPARATION FOR CONCRETE REPAIRS

- STEEL (REFER TO SPECIAL PROVISIONS)
- REPAIR MATERIAL.
- ADDITIONAL DELAMINATIONS ARE NOT PRESENT.
- NO STANDING WATER.

SEQUENCE OF CONSTRUCTION FOR COLUMN REPAIRS WITHOUT TEMPORARY PIER SUPPORTS

- COLUMN SECTION DETAIL
- ENGINEER (SEE CONCRETE REPAIR NOTES).
- 4. FORM AND PATCH SURFACE.
- OF NEXT PATCH
- 6. REMOVE CONCRETE FROM SECOND PATCH AREA.
- 7. REPEAT STEPS 2 THRU 5.
- 8. REPAIR REMAINING SIDES IN A SIMILAR MANNER.

- UTILIZED DURING REPAIRS.

PIER CAP REPAIR NOTES

1. EXTENT, LOCATION AND TYPE OF ALL CONCRETE REPAIRS TO BE FIELD VERIFIED AND APPROVED BY THE ENGINEER AFTER CONTRACTOR HAS SOUNDED AND MARKED OUT ALL REPAIR AREAS. REPAIR CONFIGURATIONS SHOULD BE KEPT AS SIMPLE AS POSSIBLE. PREFERABLY WITH SQUARE CORNERS.

2. SAW CUT ALONG NEAT LINES AROUND REPAIR AREA PRIOR TO CONCRETE EXCAVATION USE SAW CUT DEPTH OF 1" OR LESS AS REQUIRED TO AVOID CUTTING REINFORCING

3. REMOVE DETERIORATED AND DELAMINATED CONCRETE. UNDERCUT EXPOSED REINFORCING STEEL TO PROVIDE MINIMUM CLEARANCE AROUND BARS, REMOVE ADDITIONAL CONCRETE AS REQUIRED TO PROVIDE MINIMUM REQUIRED THICKNESS OF

4. IF REINFORCING STEEL IS EXPOSED THEN CLEAN BY MECHANICAL CLEANING AND THEN HIGH PRESSURE WASHING WITH WATER THAT CONTAINS NO DETERGENTS OR BOND INHIBITING CHEMICALS. WHERE ACTIVE CORROSION HAS OCCURRED THAT WOULD INHIBIT BONDING, SANDBLAST STEEL TO WHITE METAL FINISH.

5. AFTER REMOVAL AND EDGE PREPARATIONS ARE COMPLETE, REMOVE BOND INHIBITING MATERIALS (DIRT, GREASE, LOOSELY BONDED AGGREGATE) BY ABRASION BLASTING OR HIGH PRESSURE WATER BLASTING WITH WATER THAT CONTAINS NO DETERGENTS OR BOND INHIBITING CHEMICALS. CHECK THE CONCRETE SURFACES AFTER CLEANING TO ENSURE THAT SURFACE IS FREE FROM ADDITIONAL LOOSE AGGREGATE OR THAT

6. WET CONCRETE REPAIR AREA SO THAT SUBSTRATE IS SATURATED SURFACE DRY WITH

7. APPLY BONDING COMPOUND TO EXISTING CONCRETE AND REINFORCING STEEL PRIOR TO PLACEMENT OF 4000 PSI, 3 IN, 660 CEMENT CONCRETE REPAIR MATERIAL

8. PLACE APPROPRIATE REPAIR MATERIAL FOR SPECIFIC REPAIR TYPE. PLACEMENT AND SUBSEQUENT CURING SHALL BE IN ACCORDANCE WITH THE MANUFACTURER'S RECOMMENDATIONS AND THE SPECIAL PROVISIONS.

1. REMOVE CONCRETE FROM FIRST PATCH AREA TO BE PATCHED ONLY, SEE ROUND

2. CLEAN EXISTING REINFORCING STEEL AND CONCRETE (NEWLY EXPOSED). MISSING OR DETERIORATED REINFORCING STEEL SHALL BE REPLACED AS DIRECTED BY THE

3. APPLY EPOXY BONDING COMPOUND TO ALL EXISTING REINFORCING STEEL AND CONCRETE (NEWLY EXPOSED) IMMEDIATELY PRIOR TO PLACING CONCRETE.

5. A MINIMUM OF 72 HOURS SHALL ELAPSE BETWEEN PLACING OF CONCRETE AND START

9. ALL WELDED WIRE FABRIC SHALL BE EPOXY COATED.

10. ALL CONCRETE SHALL BE 4000 PSI - 🗿 IN - 660 CEMENT CONCRETE.

11. ALL SURFACED SHALL BE RUBBED TO PRODUCE A SMOOTH FINISH.

12. THE CONTRACTOR MAY SUBMIT AN ALTERNATE PIER COLUMN REPAIR PROCEDURE SUBJECT TO APPROVAL BY THE ENGINEER WHEN TEMPORARY PIER SUPPORTS ARE

1. THE CONTRACTOR SHALL PHASE PIER CAP REPAIRS SUCH THAT NO MORE THAN 50% OF ANY TWO FACES OF THE PIER CAP SHALL BE REPAIRED AT ANY ONE TIME. THE CONTRACTOR SHALL PROVIDE A SHORING SYSTEM TO SUPPORT THE CAP DEAD LOAD AND LIVE LOADS IF MORE THAN 50% OF ANY TWO FACES ARE TO BE REPAIRED AT ANY ONE TIME OR IF SO DIRECTED BY THE ENGINEER.

78'-	-0"	-	- 38'-	-0"		
23'-	-0 <u>1</u> "	26'-7 <u>13</u> "	2 SPA. @ 18'-7'	" = 37'–2"	$\begin{array}{r} \underline{1.} D1 = TYP \\ D2.D4 = \end{array}$	ICAL END DIAPHRAC
SPA. @	11'-6 1 "±	10"-	10"		D3,D5 = D6 = INTE	INTERMEDIATE DIAPI ERMEDIATE DIAPHRA
		D4 D4		D2	$\begin{array}{cccc} & 2. & U1 &= TYP \\ \hline \Box & & 3. & SEE & STEEL \\ & & 4 & SFE & PLATE \end{array}$	ICAL UTILITY SUPPO _ DETAILS FOR DIAF _ GIRDER SCHEDUIU
	9			D3	$\frac{1}{1}$ 5. ALL STEEL	. SHALL CONFORM
	Ā			D2	+ 6	
1			88°51'19"	03	+ 	
	D6			32	1 5	
	H		G54 I	<u>۲</u>	' ₩ 	
	D6		<u> </u>		' ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓	
			C G56			
	D6	D D2	 		 	
		D4 D4				SPAN NO.
	D6	2'−0" AT	G59	D3	P.C.C. STA 98.31.18	1
1		D4 D4	198+00 G60	02	₩ _ ₩ _ ₩	1
		<u>STA.</u> 97+97.38	<u> </u>	<u>99.04 </u>	= -4400'	2
					STA. 98+36.21	2
	D6		G63	D3	 ++	3
		D4 D4	G64	D2	15	3
	D6	D2	G65	D3	- ++,	
I	1	D4 D4		D2	E BRG. AB	UT
	90		667	D3	S"AT ABU	
				D2		
	0			D3		3'-0" LIMITS
	Ō	4 0 4 D		D2		WEATH
		0 0" (TYP.)-	G70 ++	D3	#' ┼ - 0" (TYP.)	
	De			D2		_
					' + ≥	
		€ BEARING N86°−00'−00"W	│	aut. &	2"ø HOLE	
		Q PIER 2		PEA BEA		
		SIA. 97+98.21		C	N N N N N N N N N N N N N N N N N N N	517
23'- SPA @	-0"	$26' - 7\frac{5}{8}''$	2 SPA. @ 18'-	$\frac{615}{16}^{15} = 37' - 1\frac{7}{8}^{7}$	-	14"
77'-	·11 <u>4</u> "	J SPA. @ 8 - 10 _{t6} ±	4 SPA. @ 	$9 - 3\frac{1}{2} \pm 11\frac{7}{8}$		DETAIL A
RAMIN	$\frac{G PLAN}{m} = 1' - 0$	_	I			SCALE: $1^{-1} = 1^{-1}$
0/122. 32	- 1 0					
— →	<u>13 EQUAL</u> = 10'-	SPACES 19 SPACE	S @ 10" = 15'−10	0" 15 S	PACES @ 9" = 11'-3"	
		\				
WEB PL	AIE L1		- FLAIE A			b
	NNECTION F	PLATES NOT SHOWN				I
CONNECT	TORS TO B	E OMITTED IN THIS REGION				
<u>SDER</u>	ELEVATI SCALE: 1/2" =	<u>ON (SPAN 2)</u> = 1'-0"				
	т					

NORTHBOUND AND SOUTHBOUND 1-93

							SPAN 1					
BEAM		CL BRG	0.1	0.2	0.3	0.4	0.51	0.61	0.7L	0.8	0.9	CL BRG
NO		S ARUT										PIFR 1
10			0.0250	0.0470	0.0640	0 0750	0 0 7 0 0	0 0 7 5 0	0.0640	0 0170		
	STEEL DL DEFLECTION	0.0000	0.0250	0.0470	0.0640	0.0750	0.0790	0.0750	0.0640	0.0470	0.0230	0.0000
	CONC. DL DEFLECTION	0.0000	0.1130	0.2150	0.2940	0.3440	0.3610	0.3440	0.2940	0.2150	0.1140	0.0000
1 0 0 0 1	S.D.L. DEFLECTION	0.0000	0.0350	0.0660	0.0920	0.1070	0.1120	0.1070	0.0920	0.0660	0.0350	0.0000
10224	VERTICAL CURVE	0.0000	0.0318	0.0606	0.0828	0.0969	0.1017	0.0969	0.0828	0.0606	0.0321	0.0000
	ADDITIONAL CAMBER	0 0000	0.0409	0.0778	0 1064	0 1245	0 1.306	0 1245	0 1064	0 0778	0.0412	0 0000
			0.2457	0.4663	0 6 3 0 2	0.7474	0 7017	0.7474	0 6 7 0 2	0.4663	0.0474	
	IUTAL CAMBER	0.0000	0.2457	0.4005	0.0392	0./4/4	0.7043	0.7474	0.0392	0.4003	0.2474	0.0000
	STEEL DL DEFLECTION	0.0000	0.0270	0.0510	0.0700	0.0820	0.0870	0.0820	0.0700	0.0510	0.0270	0.0000
0 1 1	CONC. DL DEFLECTION	0.0000	0.1440	0.2730	0.3740	0.4380	0.4600	0.4380	0.3740	0.2730	0.1440	0.0000
$\angle - $	S.D.L. DEFLECTION	0.0000	0.0320	0.0600	0.0810	0.0950	0.1010	0.0950	0.0810	0.0600	0.0320	0.0000
38	VERTICAL CURVE	0.0000	0 0 3 1 8	0.0603	0.0827	0 0968	0 1017	0.0968	0.0827	0.0603	0 0 3 1 8	0.0000
14-23		0.0000	0.0010	0.0000	0.0027	0.0000	0.1706	0.0000	0.0027	0.0005	0.0010	0.0000
		0.0000	0.0409	0.0773	0.1002	0.1244	0.1300	0.1244	0.1002	0.0773	0.0409	0.0000
	IOTAL CAMBER	0.0000	0.2757	0.5219	0.7139	0.8362	0.8803	0.8362	0.7139	0.5219	0.2757	0.0000
	STEEL DL DEFLECTION	0.0000	0.0250	0.0470	0.0640	0.0750	0.0790	0.0750	0.0640	0.0470	0.0250	0.0000
	CONC. DL DEFLECTION	0.0000	0.1040	0.1970	0.2700	0.3160	0.3320	0.3160	0.2700	0.1970	0.1040	0.0000
	S.D.L. DEFLECTION	0 0000	0.0410	0 0770	0 1050	0 1240	0 1.310	0 1240	0 1050	0 0770	0.0410	0 0000
12&13	VERTICAL CURVE		0.0318	0.0603	0.0827	0 0968	0 1017	0.0968	0.0827	0.0603	0.0318	
		0.0000	0.0010	0.0000	0.0027	0.0000	0.1706	0.0300	0.0027	0.0000	0.0010	0.0000
	ADDITIONAL CAMBER	0.0000	0.0409	0.0775	0.1062	0.1243	0.1306	0.1243	0.1062	0.0775	0.0409	0.0000
	IOIAL CAMBER	0.0000	0.2428	0.4588	0.62/9	0./361	0.//43	0./361	0.62/9	0.4588	0.2428	0.0000
							SPAN 2					
BEAM		CL BRG	0.1	0.21	0.3	0.4	0.51	0.61	0.71	0.8	0.91	CL BRG
NO		PIFR 1										PIFR 2
	STEEL DI DEFLECTION		0.2150		0 5570	0 6520	0 6250	0 6520	0 5570	0 1070	0 2150	
	SILLE DE DEFECTION	0.0000	0.2150	0.4070	0.3370	0.0520	0.0000	0.0520	0.3370	0.4070	0.2150	0.0000
	CONC. DE DEFLECTION	0.0000	0.6550	1.2390	1.6960	1.9860	2.0860	1.9860	1.6960	1.2390	0.6550	0.0000
25848	S.D.L. DEFLECTION	0.0000	0.2500	0.4/20	0.6460	0.7560	0./940	0.7560	0.6460	0.4/20	0.2500	0.0000
200.10	VERTICAL CURVE	0.0000	0.1524	0.2883	0.3947	0.4622	0.4855	0.4622	0.3947	0.2883	0.1524	0.0000
	ADDITIONAL CAMBER	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	TOTAL CAMBER	0.0000	1.2724	2.4063	3.2937	3.8562	4.0505	3.8562	3.2937	2.4063	1.2724	0.0000
	STEEL DI DEFLECTION		0 2280	0 1 3 2 0	0 5 9 1 0	0 6920	0 7 2 7 0	0 6020	0 5 9 1 0	0 1320	0 2280	0.0000
	STELL DE DEFECTION	0.0000	0.2200	0.4520	0.3310	0.0320	0.7270	0.0320	0.3310	0.4520	0.2200	0.0000
26-35	CONC. DE DEFLECTION	0.0000	0.0310	1.3730	2.1330	2.5210	2.0400	2.3210	2.1330	1.3730	0.0310	0.0000
&	S.D.L. DEFLECTION	0.0000	0.2240	0.4250	0.5850	0.6810	0.7140	0.6810	0.5810	0.4250	0.2240	0.0000
38-47	VERTICAL CURVE	0.0000	0.1524	0.2884	0.3947	0.4622	0.4855	0.4622	0.394/	0.2884	0.1524	0.0000
00 17	ADDITIONAL CAMBER	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	TOTAL CAMBER	0.0000	1.4354	2.7184	3.7237	4.3562	4.5745	4.3562	3.7197	2.7184	1.4354	0.0000
		1	1	1	1			1				
	STEEL DI DEELECTION	0 0000	0 2150	0 4070	0 5570	0.6520	0 6850	0.6520	0 5570	0 4070	0 2150	0 0000
		0.0000	0.2100	1 1 3 4 0	1 55 3 0	1 8100	1 0100	1 8100	1 55 3 0	1 1 3 4 0	0.2100	0.0000
	CONC. DE DEFECTION	0.0000	0.0000	1.1340	1.3330	1.0190	1.9100	1.0190	1.3330	1.1340	0.0000	0.0000
36&37	S.D.L. DEFLECTION	0.0000	0.2890	0.5470	0.7480	0.8760	0.9200	0.8760	0.7480	0.5460	0.2890	0.0000
	VERTICAL CURVE	0.0000	0.1525	0.2882	0.3947	0.4623	0.4855	0.4623	0.3947	0.2882	0.1525	0.0000
	ADDITIONAL CAMBER	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	TOTAL CAMBER	0.0000	1.2565	2.3762	3.2527	3.8093	4.0005	3.8093	3.2527	2.3752	1.2565	0.0000
				•	•							
							SPAN 3					
RFAM		CL BRG	0 11	0.21	0.31	$\cap 4$	0.51	0.61	\cap 71	0.81	$\cap Q$	CL BRG
		PIFR 2	U.IL						U•/ L			N ARIIT
\square \square \square \square										$\cap \cap 4 = \circ$		
	STEEL DL DEFLECTION	0.0000	0.0250	0.0470	0.0640	0.0750	0.0790	0.0750	0.0640	0.0470	0.0250	0.0000
	CUNC. DE DEFLECTION		0.1130	U.2150	0.2940	0.3440	0.3610	0.3440	0.2940	U.ZI50	0.1140	0.0000
498(72)	S.D.L. DEFLECTION	0.0000	0.0350	0.0660	0.0920	0.10/0	0.1120	0.10/0	0.0920	0.0660	0.0350	0.0000
150.72	VERTICAL CURVE	0.0000	0.0360	0.0685	0.0937	0.1096	0.1150	0.1096	0.0937	0.0685	0.0363	0.0000
	ADDITIONAL CAMBER	0.0000	0.0367	0.0699	0.0955	0.1118	0.1173	0.1118	0.0955	0.0699	0.0370	0.0000
	TOTAL CAMBER	0.0000	0.2457	0.4663	0.6392	0.7474	0.7843	0.7474	0.6392	0.4663	0.2474	0.0000
	1	1	1	1	1			1				
	STEEL DI DEFLECTION		0 0270	0 0510	0 0700	0 0820	0 0870	0 0820	0 0700	0 0510	0 0270	0 0000
	CONC DI DEFLECTION		$\bigcirc 1 1 1 1 0$	$\begin{array}{c} 0.0010 \\ 0.0770 \end{array}$	$\bigcirc 2.0700$	0.0020 0 1700	0.0070	0.0020	$\bigcirc $	$\begin{array}{c} 0.0010 \\ 0.0770 \end{array}$	$\bigcirc 1 1 1 1 \bigcirc$	
50-59	S D L DEFIECTION	0.0000								0.2/30	0.1440	0.0000
28	S.D.L. DEFLECTION	0.0000	0.0320	0.0600	0.0810	0.0950	0.1010	0.0950	0.0810	0.0600	0.0320	0.0000
62 - 71	VERTICAL CURVE	0.0000	0.0360	0.0682	0.0935	0.1095	0.1150	0.1095	0.0935	0.0682	0.0360	0.0000
	ADDITIONAL CAMBER	0.0000	0.0367	0.0696	0.0954	0.1117	0.1173	0.1117	0.0954	0.0696	0.0367	0.0000
	TOTAL CAMBER	0.0000	0.2757	0.5219	0.7139	0.8362	0.8803	0.8362	0.7139	0.5219	0.2757	0.0000
	•											
	STEEL DI DEFLECTION	$\bigcirc \bigcirc $	0 0250	0.0470	0 0640	0 0750	0 0790	0 0750	0 0640	0 0470	0.0250	0 0000
	CONC DI DEFLECTION		0.0200	$\begin{array}{c} 0.0770 \\ 0.1070 \end{array}$	$\begin{array}{c} 0.00 \pm 0 \\ 0.0700 \end{array}$	0.0700	\bigcirc	0.0700	$\begin{array}{c} 0.00 \pm 0 \\ 0.0700 \end{array}$	$\begin{array}{c} 0.0770 \\ 0.1070 \end{array}$	$\begin{array}{c} 0.0200 \\ 0.1010 \end{array}$	
	CUNC. DE DEFLECTION		0.1040							0.13/0	0.1040	0.0000
60&61	S.D.L. DEFLECTION	0.0000	0.0410	0.0//0	0.1050	0.1240	0.1310	0.1240	0.1050	0.0770	0.0410	0.0000
	VERTICAL CURVE	0.0000	0.0360	0.0682	0.0935	U.1095	U.1150	0.1095	0.0935	0.0682	0.0360	0.0000
	ADDITIONAL CAMBER	0.0000	0.0367	0.0696	0.0954	0.1116	0.1173	0.1116	0.0954	0.0696	0.0367	0.0000
	TOTAL CAMBER	0.0000	0.2428	0.4588	0.6279	0.7361	0.7743	0.7361	0.6279	0.4588	0.2428	0.0000

BEAM		CL BRG	0.1L	0.2L	0.3L	0.4L	0.5L	0.6L	0.7L	0.8L	0.9L	CL BRG
NO.		S ABUT										PIER 1
	STEEL DL DEFLECTION	0.0000	0.0250	0.0470	0.0640	0.0750	0.0790	0.0750	0.0640	0.0470	0.0250	0.0000
	CONC. DL DEFLECTION	0.0000	0.1130	0.2150	0.2940	0.3440	0.3610	0.3440	0.2940	0.2150	0.1140	0.0000
18071	S.D.L. DEFLECTION	0.0000	0.0350	0.0660	0.0920	0.1070	0.1120	0.1070	0.0920	0.0660	0.0350	0.0000
T Q Z 4	VERTICAL CURVE	0.0000	0.0318	0.0606	0.0828	0.0969	0.1017	0.0969	0.0828	0.0606	0.0321	0.0000
	ADDITIONAL CAMBER	0.0000	0.0409	0.0778	0.1064	0.1245	0.1306	0.1245	0.1064	0.0778	0.0412	0.0000
	TOTAL CAMBER	0.0000	0.2457	0.4663	0.6392	0.7474	0.7843	0.7474	0.6392	0.4663	0.2474	0.0000
			0.0070		0 0 7 0 0		0.0070		0 0 7 0 0		0.0070	
	STEEL DL DEFLECTION	0.0000	0.0270	0.0510	0.0700	0.0820	0.0870	0.0820	0.0700	0.0510	0.0270	0.0000
2-11	S D L DEFLECTION	0.0000	0.1440	0.2730	0.3740	0.4380	0.4600	0.4380	0.3740	0.2730	0.1440	0.0000
&	VERTICAL CURVE	0.0000	0.0320	0.0000	0.0810	0.0950	0.1010	0.0950	0.0810	0.0000	0.0320	0.0000
14-23	ADDITIONAL CAMBER	0.0000	0.0409	0.0775	0.1062	0.1244	0.1306	0.1244	0.1062	0.0775	0.0409	0.0000
	TOTAL CAMBER	0.0000	0.2757	0.5219	0.7139	0.8362	0.8803	0.8362	0.7139	0.5219	0.2757	0.0000
	I											
	STEEL DL DEFLECTION	0.0000	0.0250	0.0470	0.0640	0.0750	0.0790	0.0750	0.0640	0.0470	0.0250	0.0000
	CONC. DL DEFLECTION	0.0000	0.1040	0.1970	0.2700	0.3160	0.3320	0.3160	0.2700	0.1970	0.1040	0.0000
1 7 8, 1 3	S.D.L. DEFLECTION	0.0000	0.0410	0.0770	0.1050	0.1240	0.1310	0.1240	0.1050	0.0770	0.0410	0.0000
IZQIJ	VERTICAL CURVE	0.0000	0.0318	0.0603	0.0827	0.0968	0.1017	0.0968	0.0827	0.0603	0.0318	0.0000
	ADDITIONAL CAMBER	0.0000	0.0409	0.0775	0.1062	0.1243	0.1306	0.1243	0.1062	0.0775	0.0409	0.0000
	TOTAL CAMBER	0.0000	0.2428	0.4588	0.6279	0.7361	0.7743	0.7361	0.6279	0.4588	0.2428	0.0000
							CDANI O					
		CI RRC	\cap 1	$\cap 2$		$\cap \land \downarrow$	0 51		$\cap 7$			CI RRC
		PIFR 1	U.IL	U.ZL	U.JL	0.4L	0.JL	0.01	0.7L	0.01	0.9L	PIFR 2
	STEEL DL DEFLECTION	0.0000	0.2150	0.4070	0.5570	0.6520	0.6850	0.6520	0.5570	0.4070	0.2150	0.0000
	CONC. DL DEFLECTION	0.0000	0.6550	1.2390	1.6960	1.9860	2.0860	1.9860	1.6960	1.2390	0.6550	0.0000
	S.D.L. DEFLECTION	0.0000	0.2500	0.4720	0.6460	0.7560	0.7940	0.7560	0.6460	0.4720	0.2500	0.0000
23&48	VERTICAL CURVE	0.0000	0.1524	0.2883	0.3947	0.4622	0.4855	0.4622	0.3947	0.2883	0.1524	0.0000
	ADDITIONAL CAMBER	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	TOTAL CAMBER	0.0000	1.2724	2.4063	3.2937	3.8562	4.0505	3.8562	3.2937	2.4063	1.2724	0.0000
				0 1700			0 7070		0 5 0 4 0	0 4700	0.0000	
	SIEEL DL DEFLECTION	0.0000	0.2280	0.4320	0.5910	0.6920	0.7270	0.6920	0.5910	0.4320	0.2280	0.0000
26-35	S D L DEFLECTION	0.0000	0.0310	0.4250	2.1330	0.6810	2.0400	0.6810	2.1330	0.4250	0.0310	0.0000
38	VERTICAL CURVE	0.0000	0.1524	0.2884	0.3947	0.4622	0.4855	0.4622	0.3947	0.2884	0.1524	0.0000
38-47	ADDITIONAL CAMBER	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	TOTAL CAMBER	0.0000	1.4354	2.7184	3.7237	4.3562	4.5745	4.3562	3.7197	2.7184	1.4354	0.0000
										I		
	STEEL DL DEFLECTION	0.0000	0.2150	0.4070	0.5570	0.6520	0.6850	0.6520	0.5570	0.4070	0.2150	0.0000
	CONC. DL DEFLECTION	0.0000	0.6000	1.1340	1.5530	1.8190	1.9100	1.8190	1.5530	1.1340	0.6000	0.0000
36&37	S.D.L. DEFLECTION	0.0000	0.2890	0.5470	0.7480	0.8760	0.9200	0.8760	0.7480	0.5460	0.2890	0.0000
	VERTICAL CURVE	0.0000	0.1525	0.2882	0.3947	0.4623	0.4855	0.4623	0.3947	0.2882	0.1525	0.0000
	TOTAL CAMPER	0.0000	1.2565	0.0000	3 25 27	3 8003	0.0000	3 8003	3 2527	0.0000	1.2565	0.0000
	TOTAL CAMBER	0.0000	1.2000	2.3702	J.ZJZ7	J.009J	4.0005	5.0095	J.ZJZ7	2.3732	1.2000	0.0000
							SPAN 3					
BEAM		CL BRG	0.1L	0.2L	0.3L	0.4L	0.5L	0.6L	0.7L	0.8L	0.9L	CL BRG
NO.		PIER 2										N ABUT
	STEEL DL DEFLECTION	0.0000	0.0250	0.0470	0.0640	0.0750	0.0790	0.0750	0.0640	0.0470	0.0250	0.0000
	CONC. DL DEFLECTION	0.0000	0.1130	0.2150	0.2940	0.3440	0.3610	0.3440	0.2940	0.2150	0.1140	0.0000
49&72	S.D.L. DEFLECTION	0.0000	0.0350	0.0660	0.0920	0.1070	0.1120	0.1070	0.0920	0.0660	0.0350	0.0000
	ADDITIONAL CAMBER	0.0000	0.0360	0.0000	0.0937	0.1090	0.1130 0.1173	0.1090	0.0937	$\frac{0.0600}{0.0699}$	0.0303	0.0000
	TOTAL CAMBER	0.0000	0.0307	0.0000	0.0300	0.7474	0.7843	$\begin{array}{c} 0.7474 \end{array}$	0.0300	0.0000	0.0370	0.0000
		0.0000	0.2107	0.1000	0.0002	0.7171	0.7010	0.7171	0.0002	0.1000	0.2171	0.0000
	STEEL DL DEFLECTION	0.0000	0.0270	0.0510	0.0700	0.0820	0.0870	0.0820	0.0700	0.0510	0.0270	0.0000
	CONC. DL DEFLECTION	0.0000	0.1440	0.2730	0.3740	0.4380	0.4600	0.4380	0.3740	0.2730	0.1440	0.0000
50-59 8	S.D.L. DEFLECTION	0.0000	0.0320	0.0600	0.0810	0.0950	0.1010	0.0950	0.0810	0.0600	0.0320	0.0000
∝ 62_71	VERTICAL CURVE	0.0000	0.0360	0.0682	0.0935	0.1095	0.1150	0.1095	0.0935	0.0682	0.0360	0.0000
02 / 1	ADDITIONAL CAMBER	0.0000	0.0367	0.0696	0.0954	0.1117	0.1173	0.1117	0.0954	0.0696	0.0367	0.0000
	TOTAL CAMBER	0.0000	0.2757	0.5219	0.7139	0.8362	0.8803	0.8362	0.7139	0.5219	0.2757	0.0000
		0.0000		\bigcirc			\circ \circ \neg \circ \circ	0 0750				0.0000
	CONC DI DEFLECTION			0.04/0	0.0640	0.0/50	0.0/90	0.0/50	0.0640	0.04/0	0.0250	
	S D L DEFLECTION		$\begin{array}{c} 0.1040 \\ 0.0410 \end{array}$	0.1370	0.2700	0.3100 0.1210	$\begin{array}{c} 0.3320\\ 0.1310 \end{array}$	$\begin{array}{c} 0.3100 \\ 0.1210 \end{array}$	0.2700	$\begin{array}{c} 0.1970 \\ 0.0770 \end{array}$	0.1040	
60&61	VERTICAL CURVE	0.0000	0.0360	0.0682	0.0935	0.1095	0.1150	0.1095	0.0935	0.0682	0.0360	0.0000
	ADDITIONAL CAMBER	0.0000	0.0367	0.0696	0.0954	0.1116	0.1173	0.1116	0.0954	0.0696	0.0367	0.0000
	TOTAL CAMBER	0.0000	0.2428	0.4588	0.6279	0.7361	0.7743	0.7361	0.6279	0.4588	0.2428	0.0000
		1						1		1		

BEAM		CL BRG	0.1L	0.2L	0.3L	0.4L	0.5L	0.6L	0.7L	0.8L	0.9L	CL BRG DIFR 1
ΝΟ.	STEEL DI DEELECTION		0.0250	0.0470	0.0640	0 0750	0 0790	0 0750	0.0640	0 0470	0.0250	
	CONC. DL DEFLECTION	0.0000	0.1130	0.2150	0.2940	0.3440	0.3610	0.3440	0.2940	0.2150	0.1140	0.0000
1 0 0 1	S.D.L. DEFLECTION	0.0000	0.0350	0.0660	0.0920	0.1070	0.1120	0.1070	0.0920	0.0660	0.0350	0.0000
1&24	VERTICAL CURVE	0.0000	0.0318	0.0606	0.0828	0.0969	0.1017	0.0969	0.0828	0.0606	0.0321	0.0000
	ADDITIONAL CAMBER	0.0000	0.0409	0.0778	0.1064	0.1245	0.1306	0.1245	0.1064	0.0778	0.0412	0.0000
	TOTAL CAMBER	0.0000	0.2457	0.4663	0.6392	0.7474	0.7843	0.7474	0.6392	0.4663	0.2474	0.0000
			0 0 0 7 0				0 0 0 7 0					
	STEEL DL DEFLECTION	0.0000	0.02/0	0.0510	0.0/00	0.0820	0.0870	0.0820	0.0/00	0.0510	0.0270	0.0000
2-11	S D L DEFLECTION	0.0000	0.1440	0.2730	0.3740	0.4380	0.4600	0.4380	0.3740	0.2730	0.1440	0.0000
&	VERTICAL CURVE	0.0000	0.0320	0.0000	0.0810	0.0950	0.1010	0.0950	0.0810	0.0000	0.0320	0.0000
14-23	ADDITIONAL CAMBER	0.0000	0.0409	0.0775	0.1062	0.1244	0.1306	0.1244	0.1062	0.0775	0.0409	0.0000
	TOTAL CAMBER	0.0000	0.2757	0.5219	0.7139	0.8362	0.8803	0.8362	0.7139	0.5219	0.2757	0.0000
		•								1		
	STEEL DL DEFLECTION	0.0000	0.0250	0.0470	0.0640	0.0750	0.0790	0.0750	0.0640	0.0470	0.0250	0.0000
	CONC. DL DEFLECTION	0.0000	0.1040	0.1970	0.2700	0.3160	0.3320	0.3160	0.2700	0.1970	0.1040	0.0000
12&13	S.D.L. DEFLECTION	0.0000	0.0410	0.0//0	0.1050	0.1240	0.1310	0.1240	0.1050	0.0//0	0.0410	0.0000
	ADDITIONAL CAMPER	0.0000	0.0318	0.0603	0.0827	0.0968 0.1243	0.1017	0.0968	0.0827	0.0603	0.0318	0.0000
	TOTAL CAMBER	0.0000	0.0409	0.0775	0.1002	0.7243	0.7300	0.7361	0.1002	0.0775	0.0409	0.0000
	TOTAL CAMBER	0.0000	0.2720	0.4000	0.0275	0.7001	0.7743	0.7501	0.0273	0.700	0.2720	0.0000
							SPAN 2					
BEAM		CL BRG	0.1L	0.2L	0.3L	0.4L	0.5L	0.6L	0.7L	0.8L	0.9L	CL BRG
NO.		PIER 1		-	-			-	-		-	PIER 2
	STEEL DL DEFLECTION	0.0000	0.2150	0.4070	0.5570	0.6520	0.6850	0.6520	0.5570	0.4070	0.2150	0.0000
	CONC. DL DEFLECTION	0.0000	0.6550	1.2390	1.6960	1.9860	2.0860	1.9860	1.6960	1.2390	0.6550	0.0000
25&48	VERTICAL CURVE	0.0000	0.2000	0.4720 0.2883	0.0400 0.3947	0.7500	0.7940	0.7500	0.0400 0.3947	0.4720 0.2883	0.2500	0.0000
	ADDITIONAL CAMBER	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	TOTAL CAMBER	0.0000	1.2724	2.4063	3.2937	3.8562	4.0505	3.8562	3.2937	2.4063	1.2724	0.0000
	STEEL DL DEFLECTION	0.0000	0.2280	0.4320	0.5910	0.6920	0.7270	0.6920	0.5910	0.4320	0.2280	0.0000
26-35	CONC. DL DEFLECTION	0.0000	0.8310	1.5730	2.1530	2.5210	2.6480	2.5210	2.1530	1.5730	0.8310	0.0000
&	S.D.L. DEFLECTION	0.0000	0.2240	0.4250	0.5850	0.6810	0./140	0.6810	0.5810	0.4250	0.2240	0.0000
38-47	ADDITIONAL CAMBER	0.0000	0.1524	0.2004	0.3947	0.4622	0.4655	0.4622	0.3947	0.2004	0.1524	0.0000
	TOTAL CAMBER		1 4354	2 7184	3 72.37	4.3562	4 5745	4.3562	3 7197	2 7184	1 4354	0.0000
		0.0000	1.1001	2.7101	0.7207	1.0002	1.0710	1.0002	0.7107	2.7101	1.1001	0.0000
	STEEL DL DEFLECTION	0.0000	0.2150	0.4070	0.5570	0.6520	0.6850	0.6520	0.5570	0.4070	0.2150	0.0000
	CONC. DL DEFLECTION	0.0000	0.6000	1.1340	1.5530	1.8190	1.9100	1.8190	1.5530	1.1340	0.6000	0.0000
36&37	S.D.L. DEFLECTION	0.0000	0.2890	0.5470	0.7480	0.8760	0.9200	0.8760	0.7480	0.5460	0.2890	0.0000
00000	VERTICAL CURVE	0.0000	0.1525	0.2882	0.394/	0.4623	0.4855	0.4623	0.394/	0.2882	0.1525	0.0000
	ADDITIONAL CAMBER	0.0000	0.0000	0.0000	3 25 27	3 8003	0.0000	3 8003	3 25 27	0.0000	1.2565	0.0000
	TOTAL CAMBER	0.0000	1.2000	2.3702	J.ZJZ7	J.009J	4.0005	5.0095	J.ZJZ7	2.3732	1.2000	0.0000
							SPAN 3					
BEAM		CL BRG	0.1L	0.2L	0.3L	0.4L	0.5L	0.6L	0.7L	0.8L	0.9L	CL BRG
NO.		PIER 2	-	-	-			-	-	-	-	N ABUT
	STEEL DL DEFLECTION	0.0000	0.0250	0.0470	0.0640	0.0750	0.0790	0.0750	0.0640	0.0470	0.0250	0.0000
	CONC. DL DEFLECTION	0.0000	0.1130	0.2150	0.2940	0.3440	0.3610	0.3440	0.2940	0.2150	0.1140	0.0000
49&72	VERTICAL CURVE	0.0000	0.0350	0.0000	0.0920	0.1070	0.1120	0.1070	0.0920	0.0000	0.0350	0.0000
	ADDITIONAL CAMBER	0.0000	0.0367	0.0699	0.0955	0.1118	0.1173	0.1118	0.0955	0.0699	0.0370	0.0000
	TOTAL CAMBER	0.0000	0.2457	0.4663	0.6392	0.7474	0.7843	0.7474	0.6392	0.4663	0.2474	0.0000
	STEEL DL DEFLECTION	0.0000	0.0270	0.0510	0.0700	0.0820	0.0870	0.0820	0.0700	0.0510	0.0270	0.0000
50-59	CONC. DL DEFLECTION	0.0000	0.1440	0.2730	0.3740	0.4380	0.4600	0.4380	0.3740	0.2730	0.1440	0.0000
&	S.U.L. DEFLECTION	0.0000	0.0320	0.0600	0.0810	0.0950	0.1010	0.0950	0.0810	0.0600	0.0320	0.0000
62-71	ADDITIONAL CAMBER	0.0000	0.0360	0.0682	0.0935	0.1095 0.1117	0.1130 0.1173	0.1095	0.0935	0.0682	0.0360	0.0000
	TOTAL CAMBER		0 2757	0.5219	0 7139	0 8.362	$\begin{array}{c} 0.1173 \\ 0.8803 \end{array}$	0 8362	0 7139	0.5219	0 2757	0.0000
			<u> </u>	0.0210	0.7100	0.0002	0.0000	0.0002			0,2,0/	0.0000
	STEEL DL DEFLECTION	0.0000	0.0250	0.0470	0.0640	0.0750	0.0790	0.0750	0.0640	0.0470	0.0250	0.0000
	CONC. DL DEFLECTION	0.0000	0.1040	0.1970	0.2700	0.3160	0.3320	0.3160	0.2700	0.1970	0.1040	0.0000
60&61	S.D.L. DEFLECTION	0.0000	0.0410	0.0770	0.1050	0.1240	0.1310	0.1240	0.1050	0.0770	0.0410	0.0000
	VERTICAL CURVE	0.0000	0.0360	0.0682	0.0935	0.1095	0.1150	0.1095	0.0935	0.0682	0.0360	0.0000
	TOTAL CAMPED		0.036/	0.0090	0.0954	0.1110	0.11/3	0.1110	0.0954	0.0090	0.036/	
	IIVIAL VAMDEK		U.Z4ZŎ	U.4000	U.02/9	U./JOI	U.//4J	U./JØI	U.02/9	U.4000	U.Z4ZŎ	0.0000

CAMBER TABLES

STATE	FED. AID PROJ. NO.	SHEET NO.	TOTAL SHEETS
MASS.	BRI-093-1 (524) STP 093-1	47	60
PR	DJECT FILE NO.	6062	255
-	CAMBER TA	ABLE	<u>S</u>

OVERHANG DIMENSIONS MEASURED AT MIDDLE AND BOTH ENDS OF EACH SPAN

		STATEFED. AIDPROJ. NO.SHEET NO.MASS.BRI-093-1 (524) STP 093-1 4949PROJECTFILENO.6062MODULARUNITLAY	TOTAL SHEETS 60 555 ÓUT
G. NORTH ABUT. 98+36.21			
2'-8" CLOSURE POUR (TYP.)	69'-9 ¹ " (SOUTHBOUND)		
$\frac{113}{4}$ (TYP.) R = 4400'			
BACKWALL DECK OVERHANG CLOSURE POUR (TYP.)	69'-9 ¹ ″ (NORTHBOUND)		
ANG			
SHEET 18 OF 25 S	MAY 18, 2011 DATE USE O	ISSUED FOR CONSTRUCT DESCRIPTION ONLY PRINTS OF LATEST DATE GE NO. M-12-027	(3B6)

6

				TC	P OF F	ORM EL	EVATION	NS SPAN	V 1				
BEAM	CL BRG	0.01	0.1		0.7		SING ST	TATIONS	0.7		0.0	1.0	CL BRG
NO.	S ABUI	0.0L	0.1L	0.2L	0.3L	0.4L	0.5L	0.6L	0./L	0.8L	0.9L	1.0L	PIEK I
01	90+00.40 06186.00	41.00 11.00	41.00 11 QQ	41.70	41./1	41./Z	41./Z	41./Z	41./1	41./1	41.09	41.00 11 QO	97+22.02
GZ G3	90+80.09 96+85.72	41.00	41.00	41.90	41.91	41.9Z	41.95	41.95	41.92	41.91	41.90	41.00	97+22.32 97+22.22
G4	96+85 35	41 69	41 71	41 73	41 74	41 75	41 75	41 75	41 75	41 74	41 72	41 71	97+21 92
65	96 + 84.98	41 45	41 47	41 48	41.50	41 51	41.51	41 51	41 51	41.50	41 48	41 47	97+21.52
<u>G6</u>	96+84.61	41 21	41 23	41 24	41.26	41 27	41.27	41.27	41.26	41.25	41 24	41.22	97+21.32
G7	96+84.23	40.96	40.98	41.00	41.01	41.02	41.03	41.03	41.02	41.01	41.00	40.98	97+21.02
G8	96+83.85	40.72	40.74	40.76	40.77	40.78	40.79	40.79	40.78	40.77	40.76	40.74	97+20.70
69	96+83.48	40.48	40.50	40.52	40.53	40.54	40.55	40.55	40.54	40.53	40.52	40.50	97+20.40
G10	96+83.10	40.24	40.26	40.28	40.29	40.30	40.30	40.30	40.30	40.29	40.28	40.26	97+20.10
G11	96+82.72	40.00	40.02	40.04	40.05	40.06	40.06	40.06	40.06	40.05	40.04	40.02	97+19.78
G12	96+82.34	39.75	39.77	39.79	39.80	39.81	39.81	39.81	39.81	39.80	39.79	39.78	97+19.48
G13	96+82.08	40.39	40.41	40.42	40.44	40.45	40.45	40.45	40.45	40.44	40.43	40.42	97+19.14
G14	96+81.69	40.39	40.41	40.43	40.44	40.45	40.46	40.46	40.45	40.45	40.43	40.42	97+18.44
G15	96+81.31	40.14	40.17	40.18	40.20	40.21	40.21	40.21	40.21	40.20	40.19	40.17	97+17.74
G16	96+80.92	39.90	39.92	39.94	39.96	39.97	39.97	39.97	39.97	39.96	39.95	39.93	97+17.04
G17	96+80.53	39.66	39.68	39.70	39.71	39.73	39.73	39.73	39.73	39.72	39.71	39.69	97+16.34
G18	96+80.14	39.42	39.44	39.46	39.47	39.48	39.49	39.49	39.49	39.48	39.46	39.45	97+15.63
G19	96+79.75	39.18	39.20	39.22	39.23	39.24	39.25	39.25	39.24	39.23	39.22	39.21	97+14.92
G20	96+79.36	38.93	38.96	38.97	38.99	39.00	39.01	39.01	39.00	38.99	38.98	38.97	97+14.20
G21	96+78 96	38.69	38 71	38 7.3	38 75	38 76	38 76	38 76	38 76	38 75	38 74	38 7.3	97+13 49
G22	96+78.56	38 45	38.47	38.49	38.51	38.52	38.52	38.52	38.52	38.51	38.50	38.48	97+12 77
G2.3	96+78 16	38.64	38.66	38.68	38.69	38.70	38.71	38.71	38.71	38.70	38.69	38.67	97+12.05
G24	96+77 76	38 99	39.00	39.02	39.04	39.04	39.05	39.05	39.05	39.04	39.03	39.02	97+11.32
									0	1			
				TC	P OF F	ORM EL		SPAN	1 2				
BEAM CL BRG INCREASING STATIONS CL BRG													
NO.	PIER 1	0.0L	0.1L	0.2L	0.3L	0.4L	0.5L	0.6L	0.7L	0.8L	0.9L	1.0L	PIER 2
G25	97+24.41	41.68	41.75	41.81	41.85	41.87	41.86	41.83	41.77	41.69	41.60	41.49	97+99.09
G26	97+24.12	41.88	41.96	42.03	42.08	42.10	42.10	42.07	42.01	41.92	41.81	41.69	97+98.95
G27	97+23.82	41.95	42.03	42.10	42.15	42.17	42.17	42.14	42.07	41.99	41.88	41.76	97+98.79
G28	97+23.52	41.71	41.79	41. <mark>8</mark> 6	41.91	41.93	41.93	41.90	41.83	41.75	41.64	41.52	97+98.64
G29	97+23.22	41.47	41.55	41.62	41.67	41.69	41.69	41.66	41.59	41.51	41.40	<mark>41.28</mark>	97+98.48
G30	97+22.93	41.22	41.31	41.38	41.43	41.45	41.45	41.42	41.35	41.27	<mark>41.1</mark> 6	41.04	97+98.33
G31	97+22.62	40.98	41.07	41.14	41.19	41.21	41.21	41.17	41.11	41.03	40.92	40.80	97+98.17
G32	97+22.32	40.74	40.82	40.90	40.95	40.97	40.97	40.93	40.87	40.78	40.68	40.56	97+98.01
G33	97+22.02	40.50	40.58	40.65	40.71	40.73	40.73	40.69	40.63	40.54	40.44	40.32	97+97.86
G34	97+21.71	40.26	40.34	40.41	40.46	40.49	40.49	40.45	40.39	40.30	40.20	40.08	97+97.70
G35	97+21.41	40.02	40.10	40.17	40.22	40.25	40.25	40.21	40.15	40.06	39.96	39.84	97+97.55
G36	97+21.10	39.78	39.85	39.91	39.95	39.97	39.96	39.93	39.87	39.80	39.70	39.60	97+97.39
G37	97+20.90	40.42	40.49	40.54	40.58	40.60	40.60	40.57	40.51	40.43	40.33	40.23	97+97.28
G38	97+20.59	40.42	40.50	40.57	40.62	40.65	40.64	40.61	40.55	40.46	40.35	40.23	97+97.12
G39	97+20.28	40.17	40.26	40.33	40.38	40.40	40.40	40.36	40.30	40.21	40.10	39.98	97+97.01
G40	97+19.97	39.93	40.01	40.09	40.14	40.16	40.16	40.12	40.06	39.97	39.86	39.74	97+96.80
G41	97+19.65	39.69	39.77	39.84	39.90	39.92	39.92	39.88	39.82	39.73	39.62	39.50	97+96.64
G42	97+19.34	39.45	39.53	39.60	39.65	39.68	39.68	39.64	39.58	39.49	39.38	39.26	97+96.48
G43	97+19.03	39.21	39.29	39.36	39.41	39.44	39.44	39.40	39.34	39.25	39.14	39.02	97+96.32
G44	97+18.71	38.97	39.05	39.12	39.17	39.20	39.19	39.16	39.10	39.01	38.90	38.78	97+96.15
G45	97+18.39	38.72	38.81	38.88	38.93	38.96	38.95	38.92	38.86	38.77	38.66	38.54	97+95.99
G46	97+18.08	38.48	38.57	38.64	38.69	38.72	38.71	38.68	38.62	38.53	38.42	38.30	97+95.82
G47	97+17.76	38.67	38.76	38.83	38.88	38.90	38.90	38.87	38.8 <mark>1</mark>	38.72	38.61	38.49	97+95.66
G48	97+17.44	39.02	39.09	39.15	39.20	39.22	39.21	39.18	39.12	39.04	38.95	38.84	97+95.49
									1 7				
				TC	POFF	ORM EL		NS SPAN	N 3			1	
SEAM	UL BRG	0.01	\cap 1	0.2	0 7		SING S	A HONS		0 01	0.01	1 0	UL BRG
NU.	MILK Z	U.UL	U.IL	U.ZL	U.JL	U.4L	U. JL	U.DL	U./L		U. 9L	1.UL	N ABUI
649	90+00.74	41.48	41.48	41.4/	41.40	41.45	41.45	41.41	41.58	41.55	41.52	41.20	90+3/.14
650	98+00.59	41.68	41.68	41.68	41.6/	41.66	41.64	41.62	41.59	41.56	41.52	41.48	98+3/.06
	30+00.44	41./0	41./0	41./0	41./4	41./3	41./1	41.09	41.00	41.03	41.09	41.00	30+30.90 08+76.00
002	30+00.29	+1.01 11.07	41.01 11.07	41.01 11.00	41.0U	41.40 11.24	41.4/	41.44	41.4Z	41.JÖ /1 1/	41.JJ	41.07	00 1 76 01
000	30+00.14	41.2/	41.2/	41.20	41.Zb	41.24	41.25	41.ZU	41.18	41.14	41.11	41.0/	30+30.01
004	3/+33.33	41.03	41.00	41.UZ	41.UZ	41.00	40.99	40.90	40.94	40.90	40.07	40.00	30+J0./Z
000	3/+33.00	40.79	40./9	4U./Ö	4U./Ö	40.70	40.70	40.72	40.70	40.00	40.00	40.09	30+30.03
600	9/+99.68	40.55	40.55	40.54	40.55	40.52	40.50	40.48	40.45	40.42	40.39	40.35	90+30.55
65/	9/+99.53	40.31	40.31	40.30	40.29	40.28	40.26	40.24	40.21	40.18	40.15	40.11	90+30.4/
600	9/+99.3/	40.07	40.0/	40.06	40.05	40.04	40.02	40.00	39.9/	39.94	39.90	39.86	98+3/.31
659	97+99.22	39.83	39.83	39.82	39.81	39.80	39./8	39.76	39./3	39.70	39.6/	39.63	98+36.29
660	9/+99.0/	39.59	39.58	39.58	39.5/	39.55	39.53	39.51	39.49	39.45	39.42	39.39	yo+Jb.21
601	9/+98.96	40.22	40.21	40.21	40.20	40.18	40.16	40.14	40.11	40.08	40.05	40.01	90+30.15
662	9/+98.81	40.22	40.22	40.21	40.20	40.19	40.17	40.15	40.12	40.09	40.05	40.01	98+36.07
663	97+98.40	39.98	39.97	39.97	39.96	39.95	39.93	39.91	39.88	39.84	39.81	39./7	98+35./3
~ ~	9/+98.49	39.74	39.73	39.73	39.72	39.71	39.69	39.66	39.63	39.60	39.56	39.53	98+35.89
G64		39.50	39.49	39.49	39.48	39.46	39.45	39.42	39.39	39.36	39.32	39.28	98+35.81
G64 G65	9/+98.33		39 25	39.25	39.24	39.22	39.21	39.18	39.15	39.12	39.08	39.04	98+35.72
G64 G65 G66	97+98.33	39.25	00.20			70 00	70 07	70 01	38 91	38 88	38 84	38.80	98 + 35.63
G64 G65 G66 G67	97+98.33 97+98.17 97+98.01	<u>39.25</u> <u>39.01</u>	39.01	39.01	39.00	38.98	20.97	JO.94	00.01	00.00	00.01	00.00	
G64 G65 G66 G67 G68	97+98.33 97+98.17 97+98.01 97+97.85	39.25 39.01 38.77	39.01 38.77	39.01 38.77	39.00 38.76	38.98 38.74	38.72	38.70	38.67	38.64	38.60	38.56	98+35.54
G64 G65 G66 G67 G68 G69	97+98.33 97+98.17 97+98.01 97+97.85 97+97.70	39.25 39.01 38.77 38.53	39.01 38.77 38.53	39.01 38.77 38.52	39.00 38.76 38.52	38.98 38.74 38.50	38.72 38.48	38.70 38.46	38.67 38.43	38.64 38.40	38.60 38.36	38.56 38.32	98+35.54 98+35.46
G64 G65 G66 G67 G68 G69 G69 G70	97+98.33 97+98.17 97+98.01 97+97.85 97+97.70 97+97.53	39.25 39.01 38.77 38.53 38.29	39.01 38.77 38.53 38.29	39.01 38.77 38.52 38.28	39.00 38.76 38.52 38.28	38.98 38.74 38.50 38.26	38.97 38.72 38.48 38.24	38.70 38.46 38.22	38.67 38.43 38.19	38.64 38.40 38.16	38.60 38.36 38.12	38.56 38.32 38.08	98+35.54 98+35.46 98+35.37
G64 G65 G66 G67 G68 G69 G70 G71	97+98.33 97+98.17 97+98.01 97+97.85 97+97.70 97+97.53 97+97.37	39.25 39.01 38.77 38.53 38.29 38.48	39.01 38.77 38.53 38.29 38.48	39.01 38.77 38.52 38.28 38.47	39.00 38.76 38.52 38.28 38.46	38.98 38.74 38.50 38.26 38.45	38.72 38.48 38.24 38.43	38.70 38.46 38.22 38.41	38.67 38.43 38.19 38.38	38.64 38.40 38.16 38.35	38.60 38.36 38.12 38.31	38.56 38.32 38.08 38.27	98+35.54 98+35.46 98+35.37 98+35.28

SHEFT	22 FOR DETAILING
TOP OF ROADWA	Y #6
	#4 (TYP.)-
BASE COURSE	
GRAVEL SUB-BASE	SEE NOTE A
	2" CL.
10" APPROACH	MIN. 4" TO ⓒ (TYP.)
	#5 @ 8" D&G 11" DEEP 1퉒"Ø HOLE IN EXISTING WINGWALL
DTE A: THE PROPOSED LOCATION OF THE VERHANGS THE APPROACH SLAB S NGWALL THE CONTRACTOR SHALL IGINEER FOR EVALUATION FOR MO D THE WINGWALL CAP DETAILS E. WINGWALL = $1\frac{1}{2}$ " E. WINGWALL = $1\frac{1}{2}$ " MINL 5 ¹¹ " MA	IE CURBLINE SIDE OF THE NOTIFY THE WIN DDIFICATIONS

MEDFORD I-93 OVER SALEM STREET EB

STATE FED. AID PROJ. NO. BRI-093-1 (524) STP 093-1

SHEET TOTAL NO. SHEET

MEDFORD I-93 OVER SALEM STREET EB SHEET NO. TOTA

STATE FED. AID PROJ. NO. BRI-093-1 (524) STP 093-1 MASS. PROJECT FILE NO. 606255

SHEET 58 60

CROSS SECTIONS

MEDFORD I-93 OVER SALEM STREET EB STATE FED. AID PROJ. NO. SHEET TOTAL NO. SHEETS MASS. BRI-093-1 (524) STP 093-1 60 60 PROJECT FILE NO. 606255

CROSS SECTIONS