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CHAPTER I 
 

INTRODUCTION 
 
 

The American Society of Civil Engineers (ASCE) in 2009 released their report card on 

the infrastructure of the United States of America. Overall the nation’s infrastructure received a D 

grade which points to an outdated infrastructure that is in need of innovative solutions to place the 

nations’ highways in acceptable condition.  Bridges received one of the higher grades, a C, due to 

a large percent of them being structurally deficient or functionally obsolete (ASCE 2009).  One 

innovative technique that is being explored for bridge construction and replacement has been 

Accelerated Bridge Construction (ABC).   

ABC encourages the use of bridge replacement and construction techniques that 

minimally affect traffic flows.  The Utah Department of Transportation (UDOT) has used several 

different ABC techniques to reduce the traffic delays associated with a growing infrastructure 

demand.  Some of these techniques have involved building the bridge off site and moving it into 

place with a Self Propelled Modular Transporter (SPMT).  This technique requires substantial 

upfront investments for SPMT, though the traffic delay can be minimized to days instead of 

months.  UDOT has used SPMT bridge construction for several years, and in that time span has 

developed specifications for use of the SPMT.  The SPMTs are a cost beneficial alternative when 

large traffic disruptions are problematic, and there is a site nearby to build the bridge section.   

 Another technique used by ABC is the use of precast members that can be quickly 

constructed on site.  Various DOTs have used precast concrete girders and deck panels to 

expedite the construction process.  Precast concrete deck panels are a good alternative to cast-in-

place (CIP) concrete decks because they cure off site and then are placed on the bridge fully 

cured.  These deck panels are typically positioned adjacent to one another and the joints between 

the panels are filled with grout.  The CIP decks are continuous and monolithic, whereas the 

precast panels have a joint between panels which have been found to be prone to cracking.  By 
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adding post-tensioning through the joint the cracking can be minimized.  While the rest of the 

panels are problem free post-tensioning increases the strength and the serviceability of the decks, 

it creates a problem when an individual panel is required to be removed.  Utah State University 

(USU) has done several studies on the use of a curved bolt connection to strengthen the panel 

connection.  This research examines the use of a pre-stressing strand in the place of previously 

tested threaded rods for the post-tensioning medium.  In addition to capacity testing, pre-stress 

losses across the joint were also monitored. 

 This research has focused on the behavior of a 72” curve strand connection.  The research 

was done in four parts.  A small-scale study was performed to determine flexural strength of the 

connection.  The results were then compared to the behavior of a straight post-tensioned 

connection.  One of the small-scale specimens was selected to study pre-stress losses in the 72” 

connection.  Losses were measured for 60 days and then extrapolated out across the life of the 

deck.  A full depth full width specimen was constructed to be tested in shear.  The shear behavior 

of the joint could then be compared to a standard DOT post-tensioning connection.  A full-scale 

model was constructed and tested to determine the behavior of the connection in negative 

bending.  A finite-element model (FEM) was also constructed, tested and then compared to the 

physical models.  

 The research showed that the 72” curve bolt behaved similarly to a standard post-

tensioning connection in use by DOT’s.  The small-scale curved-strand connection was tested in 

flexure, and was found to have an ultimate capacity of 31 k-ft, this value was similar to previous 

research that was conducted at USU. Pre-stress losses were measured on a small-scale flexure 

specimen.  The measured pre-stress loss values were compared to predicted values in the 

American Association of State Highway and Transportation Officials (AASHTO) Load and 

Resistance and Factor Design (LRFD) Specifications.  The measured losses were used to 

calculate future losses using a linear regression analysis.  The extrapolated losses at 75 years was 

found to be 6%.  This was 26% of the value predicted using the AASHTO LRFD Specifications.  
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A shear test was performed on a 12 ft wide small-scale specimen.  The shear strength of the panel 

was approximately 157.4 k, or 31.5 k per connection.  A full-scale composite specimen was 

tested in a negative moment region.  The test specimen consisted of two pre-cast deck panels 

placed on two steel I-girders made composite through shear studs.  An external negative moment 

was induced using a beam with an overhang test setup.  The capacity of the system in negative 

bending was found to be 500 k.  This value compared very well with the values predicted by the 

AASHTO LRFD Specification. 
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CHAPTER II 

LITERATURE REVIEW 
 
 

Introduction 
 
 
 The use of precast concrete deck panels has been utilized for many years.  This 

construction technique has helped to decrease the overall construction time of many projects.  

Initially these decks have performed well in the field, however, over time joint leaking has been 

found to be a problem.  Several researchers have investigated the causes of the leaking, and 

worked to mitigate any problems found.  The body of research has varied from preparing the joint 

for grouting, shear keyway shape, post-tensioning the joint, and many other topics.   

 
Joint Considerations 

 
 
 In the mid 1990’s, several research programs investigated joint design and preparation.  

Issa et al. (1995) undertook an aggressive research program focusing on the field behavior of 

precast concrete decks throughout the United States.  The research began with identifying use of 

precast concrete decks throughout the nations DOT’s.  After a survey was completed by the 

DOT’s, several bridges were chosen to perform field investigations on.  The joints that were post-

tensioned were found to behave better than those that were not.  Several different joints shapes 

were looked at, and the post-tensioned joints were best.  The 03200 Waterbury Bridge in 

Connecticut has variable stress on each joint.  This variation in stress is due to the differing loads 

on each panel.  The pre-stressing stresses were chosen to keep the joint in compression to 

effectively seal the deck from any water that might penetrate the joints.  Le Blanc (2006) built 

upon Issa’s research during design of the West Sandusky Bridge in Findlay, Ohio.  During the 

design, a Finite-Element Analysis was performed to determine the tensile stresses that would be 

encountered during the life of the bridge.  The loads applied varied from gravity loads to creep 

and shrinkage of the concrete.  Shrinkage was found to induce the greatest tensile stresses in the 
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deck, and from those calculated stresses, a pre-stressing load was calculated to keep the deck in 

compression under any loading conditions.  In addition to the externally applied loads that cause 

joint separation and subsequent leaking, leaking can occur to due poor joint preparation (Swenty 

2009).  Joint preparation was found to be important to get a strong bond between the grout shear 

key and the concrete decks.  Proper preparation of the joint required that the joint be cleaned prior 

to grouting.  After cleaning the joint and immediately prior to grouting, the joint was required to 

be exposed to water in order to keep the concrete from drawing water out of the grout as the grout 

cured. 

 
Small-Scale Testing 

 
 
 The curved bolt connection is an option to be able to post-tension the joint, while 

allowing for the removal of a damaged panel from the middle of the deck if required.    The initial 

idea for the connection was their use in tunnel liners to seal them together.  Previous research 

done at USU was performed in two phases on the curved bolt.  The first phase of testing consisted 

of small-scale concrete panels tested in flexure.  Porter et al. (2010) performed testing at USU on 

several connection types.  The connections that were tested were a welded stud and standard post-

tensioned connection.  The third standard connection used by UDOT is a connection developed 

and tested at the University of Nebraska-Lincoln, and is known as the NUDECK connection 

(Badie and Tadros 2008).  The remaining two connections that were tested was the curve bolt 

connection previously mentioned, as well as a variation of the welded stud connection using 

embedded rebar instead of shear studs.  All connection types were tested to determine their 

flexural and shear capacity.  The purpose of the testing was to find the cracking and ultimate 

capacities of the connections.  From the collected data, recommendations for further research and 

improvements were presented.   

The first connection that was tested by Porter et al. (2010) was a welded stud connection.  

The welded stud connection is a standard connection for UDOT, and consists of two plates that 
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are cast into the deck via shear studs.  The joint configuration used was a female-female joint.  

After the panels are placed on the bridge super structure, a backer rod is placed between them and 

welded in place.  After welding the studs together, the joint is grouted.  No post-tensioning is 

provided for this connection.  A variation of this connection was also tested.  For this second 

connection type, rebar was used instead of shear studs to anchor the plates into the precast decks.  

The post-tensioning connection consisted of external post-tensioning via four rods on the outside 

of the specimen.  Two variations of the curve bolt were also tested; one had a 36-inch rod, and the 

other a 24-inch rod.  They were placed in conduit that was cast into the deck.  After grouting the 

joint the curved bolts were tightened until 300 psi of compression stress was applied along the 

joint.  The bolts strains were monitored to determine the force in the bolt, and thus the stress 

along the joint.  All connections except for the two curved bolts were tested in flexure and shear.  

The curve bolt connections were tested only in flexure.  The flexure specimens were full depth 

8.75 inches deep panels.  The specimens were 18 inches wide to account for the tributary area of 

the connection in a full-scale bridge deck.  The specimens were six feet long after grouting the 

two halves together.  The flexure decks were tested with a four point loading scheme resulting in 

a pure moment region.  The specimen was placed on two supports to create a simply supported 

beam.  Then the two loads were placed at equidistant points from each support.  This loading 

created a region over the joint that had a constant moment and zero shear.  The specimens were 

loaded monotonically until failure.  During the testing, cracking was monitored and recorded, as 

well as deflection via an LVDT.  Each connection type was tested three times, on three different 

specimens.  The average capacities were then computed.  The 24-inch curve bolt was relatively 

weak in comparison to the post-tensioned connection.  This connection cracked at 38% of the 

load required to crack the post-tensioned connection.  Its ultimate capacity was 70% of the 

ultimate capacity of the post-tensioned connection.  The researchers also tested a 36-inch curve 

bolt.  This 36-inch curve bolt cracked at 76% of the post-tensioned connection cracking load, and 

it was 20% stronger than the standard post-tension connection.  The researchers concluded that 
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the longer curve bolts acted more similar to a fully post-tensioned system in comparison to the 

shorter ones.  Therefore they could be an effective alternative to standard post-tensioning 

connection.   

 
Accelerate Bridge Deck Performance 

 
 
 UDOT has invested considerable amounts of time and money into ABC over the years.  

As a result UDOT has been able to determine problems with different aspects of ABC.  Through 

the problems encountered with their ABC experience UDOT has been able to develop their 

specifications to improve their use of ABC.  In 2010 UDOT performed a study on the experiences 

that they had with ABC.  The purpose of the study was to determine how ABC has performed in 

the past, evaluate the causes why something performed poorly, determine the life span of the 

bridges, and determine any necessary changes to the ABC Specifications and the future direction 

of any UDOT programs in order to better the ABC program.  The study investigated several 

aspects in the study.  The welded stud connection that was previously tested at USU was 

evaluated on several bridges.  It was found that it was performing well.  The joints with this 

connection were leaking and behaving like hinges instead of making the bridge decks continuous.  

UDOT estimated a 15 year service life span for bridge decks with this connection type.  The 

causes behind the weaknesses were attributed to not enough flexural capacity of the connection.  

The standard post-tensioning system was also investigated.  UDOT concluded that the standard 

longitudinal post-tensioning of the system was behaving the best.  They estimated a 75-year life 

span for the decks that were post-tensioned.  Leaking was not found to be a problem for these 

connection systems.  The causes behind the joint not leaking were attributed to the joints being in 

compression.  Several other bridge systems were also evaluated.  Concrete closure pours were 

leaking, possibly due to shrinkage of the closure pour concrete.  The bridges that were built off 

site and moved into place (using either SPMT or a sliding system) were also investigated.  The 

bridges that were built on supports that had the pick points for the SPMT different than the in 
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service supports, experienced significant cracking.  While those built and picked at similar 

support points had experienced virtually no cracking.  These bridge types have an estimated life 

span of 40 to 75 years (Utah Department of Transportation 2010).  See also Hewes and Priestly 

(2002), Holombo et al. (1998), Joen and Park (1990), MacRae and Priestley (1994), Matsumoto 

and Ma (2005), and Matsumoto et al. (2001). 

 
Full-Scale Testing 

 
 
 As a follow up study USU performed additional research on the curved bolt connection.  

Roberts (2011) performed full-scale testing of precast bridge decks on two connection types.  The 

first was the standard longitudinal post-tensioning connection, while the second was a 36-inch 

curved bolt connection.  The 36-inch connection was selected because it performed better than 

the 24-inch curve bolt in the Porter et al. (2010) research.  The purpose of the research was to 

compare the curve bolt connection to the standard post-tensioning rod connection on full-scale 

specimens.  Two types of specimens for each connection were constructed at USU.  A full depth 

flexural specimen was built for each member.  The precast panels were placed on W21x122 steel 

sections in order to maintain the location of the neutral axis out of the concrete deck.  The testing 

was done in negative bending to quantify the tensile capacity of the connections.  The other 

specimen type was a full depth specimen that was only long enough for the curve bolts.  These 

panels were tested in shear directly over the joint. 

 Both connections were built to standard DOT specifications.  The curved bolt connection 

used the identical geometry as the post-tensioned system.  After placement the joints were 

grouted with Masterflow 928 non-shrink grout.  This was the same grout used by Porter et al. 

(2010) to grout their connections.  The specimens were post-tensioned to 300 psi across the joint, 

and then grouted to the girders via shear studs.  A load was placed on the bridge deck panels at 

the overhanging edge to create a negative moment over the joint.  Loading was done in small 

increments up to the point that the top of the decks cracked.  After cracking loading steps were 
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increased.  Deflections were monitored throughout the entire test, and used to identify 

elastic/plastic behavior.  The curve bolt and post-tensioning systems were tested similarly.  The 

standard post-tensioning system cracked at almost twice the loading that was required to crack the 

curve bolt, even though the yield and plastic loads were over 80% of the loads required for the 

standard post-tensioning system.  It was concluded based on the test results that the curve bolt 

connection could be used as an acceptable alternative to standard post-tensioning currently used 

by various DOTs.  The curve bolt performed well in the testing process, and it was observed that 

it allowed for a composite failure of the deck.  The standard post-tensioning also performed well 

and held the deck together throughout the test, however numerous shear studs were found to have 

broken off during the test, which indicated a non-composite failure mechanism. 

 
Shear Testing 

 
 
 Roberts (2011) also compared the curve bolt connection to the standard post-tensioning 

system.  The specimens used in these tests had the same depth and width as those used in the 

flexural testing.  The differences were that the decks were not placed on girders, and they were 

shorter in the longitudinal direction, only being long enough to accommodate the curve bolts.  

The panels were placed on supports and a load was placed transversely at a distance equal to the 

depth d to the side of the joint.  This allowed for the joint to be loaded in constant shear.  The 

curve bolt was found to have only 30% of the capacity of the post-tension system.  This was 

stronger than the calculated values for shear, leading the researcher to conclude that the strength 

was sufficient for the loads in accordance to the AASHTO LRFD Specifications (2010).   

 Kim and Park (2002) investigated at the capacity of precast pre-stressed concrete deck 

panels.  Using Mohr’s-Circle, a required shear force for failure was calculated.  The Mohr’s-

Circle approach took the pre-stressing force and increased the rupture strength of the concrete.  

Using this approach and multiplying the shear stress by the failure plane area resulted in a shear 

force to crack and ultimately fail the specimens.  The specimens were loaded so that the joint was 
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subjected to pure shear, with little or no flexure.  The calculated cracking and failure loads were 

then compared to the measured shear values.  This technique led to good results in comparison to 

the measured values.  Kim and Park were able to demonstrate that the increase in pre-stressing 

force increased the shear capacity of the system.   

 
Pre-stress Losses 

 
 
 Pre-stressing (whether pre-tensioning or post-tensioning) has been used for many years to 

increase the strength and service performance of concrete elements.  Despite the benefits of pre-

stressing concrete, are some problems that can occur if not designed properly.  One of the biggest 

issues is accurately accounting for the pre-stress losses.  Pre-stress losses occur for several 

reasons, but all the reasons lead to the initial pre-stressing force being reduced as a function of 

time.  Elastic shortening losses occurs when a system is pre-tensioned, and is of very little 

concern with post-tensioned systems.  Shrinkage also is not a big concern for pre-cast, post-

tensioned systems, this is because most concrete members are cast off site and are allowed to 

fully cure before post-tensioning is applied.  Creep is an issue with the post-tensioning due to 

compressive loads being applied to concrete and sustaining the loads over a long period of time.  

Relaxation in the strands is another item to consider.  Slippage in the post-tensioning tendon end 

anchorage systems are also important to examine.  When using a jack the strands may slip as they 

are released from the jack.  This could potentially be even a large concern as the bridge deck 

specimens are relatively short.  Another possible source of pre-stress losses is any friction that 

might be encountered between the strands and the ducts (McCormack and Nelson 2006). 
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CHAPTER III 

RESEARCH AND TESTING 
 
 

Small-Scale Specimen Test Details 
 
 

In order to investigate the performance of a proposed precast deck panel, curved-strand 

connection, six precast panels were constructed at the Systems, Materials, and Structural Health 

Monitoring (SMASH) Lab at Utah State University (USU).  The panels were constructed and 

designed in accordance to standard AASHTO specifications, including typical rebar layout, deck 

thickness, and concrete strengths.  Three small-scale specimens were constructed with the 

proposed curved-strand detail.  As shown in Figure 1, these specimens were 0.86 x 2.5 m (34 x 98 

in.).  In order to investigate the performance of the curved-strand panels in comparison with 

standard post-tensioned panels, two standard post-tensioned specimens were also constructed 

using the same dimensions as the three curved-strand specimens.   These post-tensioned panels 

used a single straight post-tensioning rod to post-tension the system.  The sixth specimen was 

constructed for shear testing.  This shear specimen was a 3.66 m (12 ft) long section of deck joint, 

and 2.44 m (8 ft) in the direction of travel to allow for placement of the curved-strand pockets 

(see Appendix A).   

The small-scale panels were designed in accordance to the AASHTO LRFD 

Specifications (2010) which specifies that the maximum center-to-center spacing of the post-

tensioning was not to exceed 4 times the total composite deck thickness.  With a deck thickness 

equal to 220 mm (8.75 in.) a total width equal to 860 mm (34 in.) was selected.  The panel length 

was selected in order to be long enough to include the pockets for the pre-stressing strand within 

the decks.   
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Figure 1:  Small Specimen Details. 
 
 

Each precast panel was reinforced with No. 19 (No. 6) bars.  The reinforcement layout 

was placed in accordance to standard AASHTO Specifications, with a spacing of the longitudinal 

rebar equal to 300 mm (12 in.).  A top mat was placed at a depth of 95 mm (3.75 in.), and the 

bottom mat was placed at 170 mm (6.625 in.).  The pockets for the pre-stressing strand were 

designed such that on a full deck panel, with pockets on either side of the deck, they would not 

interfere with each other.  The pre-stressing strand was placed through 40 mm (1.5 in.) aluminum 

conduits that were cast into the decks.  Two strands were required for each pocket in order to 

obtain the required pre-stressing force.  The conduits were placed at a depth of 130 mm (5.25 in.) 
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at the joint in order to minimize interference with the transverse rebar, as well as to meet 

AASHTO LRFD (2010) cover requirements of 63.5 mm (2.5 in.) for the bearing plates.  Previous 

research at USU showed that adequate rebar was required to restrain the post-tensioning 

anchorage plate from pulling up through the concrete (Roberts 2011).  The post-tensioning 

strands that were used were 15.2 mm (0.6 in.) diameter, 1.86 GPa (270 ksi) seven wire strand.  

The reported manufacturer modulus of elasticity was 193 GPa (28,000 ksi). 

The two small-scale straight post-tensioning specimens were constructed using the same 

reinforcing bars as the curved-strand specimens.  These two specimens were constructed in order 

to compare the behavior of the curved-strand connection with a more traditional post-tensioned 

connection.  These specimens were geometrically similar to the small, curved-strand specimens.  

The post-tensioning was applied using a 25.4 mm (1 in.) diameter, 720 MPa (105 ksi) straight 

post-tensioning rod.  A single rod was used for each specimen which was anchored to bearing 

plates at each end.  The rod was located at mid height of the panel.   

The shear specimen was constructed similarly to the small-scale, flexure panels.  As 

shown in Figure 1, the shear specimens had a curved-strand connection spacing of 730 mm (28.8 

in.), this was due to having a 3.7 m (12 ft) wide deck and five curved-strand connections.  The 

connections alternated in length from 1.2 m (48 in.) to 1.8 m (72 in.) strands.  This staggering of 

strand lengths was utilized so that a deck panel having pre-stressing tendons on either side of the 

deck would not have a continuous line of anchor pockets.  Previous research showed that longer 

curved-strands behaved better than shorter curved-strands (Porter 2010).  Therefore the longest 

tendons possible were selected, the limiting factor being the pockets on the opposite side of the 

decks.  Another benefit that could be realized from utilizing the longer tendons would be a 

reduction in seating losses, as the anchorage losses for a short strand are larger than those in a 

longer strand. 

The specified concrete compressive strength for all panels was 27.6 MPa (4000 psi) at 28 

days.  Concrete cylinders were made at the time of casting and were tested in accordance with 
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ASTM Standards at 28 days.  The actual concrete compressive strength was found to be 34.7 

MPa (5040 psi).  The experimentally obtained modulus of elasticity was measured to be 35.2 GPa 

(5100 ksi).  The mild reinforcement that was used in all specimens had a yield stress of 410 MPa 

(60 ksi).  The Modulus of Elasticity was assumed to be 200 GPa (29,000 ksi).   

After the concrete specimens attained the required compressive strength, they were 

moved into place and grouted together using Masterflow 928 grout.  The pre-stressing strands 

were then post-tensioned to their required force.  The AASHTO LRFD Specifications (2010) 

requires that a force sufficient to supply 1.7 MPa (250 psi) of stress be distributed across the joint 

face.  The maximum spacing was chosen to be the effective width for each strand.  With two 

strands per pocket, the required load in each strand was 165 kN (37.2 kips).  To verify the actual 

load in the strands, a load cell was placed at the ends of a select number of strands.  The strands 

were jacked in two stages.  First the strands were stressed to a line pressure of 13.8 MPa (2000 

psi) to set the chuck wedge on the dead end.  The load was then removed and the tendon was 

again stressed to 120% of the required load; and the chuck wedge was then seated.  This 

overstressing was applied to compensate for the estimated seating and elastic shortening losses.  

The straight post-tensioned specimens were stressed by tightening a nut on the end of the rod.  

The load and strain in the rod was measured to verify that the appropriate post-tensioning load 

was obtained.   

Figure 2 shows the test set up for the flexure and shear specimens.  The three curved bolt 

and two post tension specimens were tested through failure using a four point loading scheme.  

The four point loading scheme was selected to produce a region of pure moment and zero shear 

over the joint of the test specimen.  During each of the tests, loads and corresponding deflections 

were measured during testing.  Load cells that were used during the pre-stressing operation were 

also monitored to help identify cracking.  Loading of the panels was accomplished using a single 

hydraulic ram centered on a spreader beam.  To avoid a shear failure and induce a flexural failure, 

the panels were set on the testing frame with 250 mm (10 in.) of overhang, and 460 mm (18 in.) 
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between the reactions of the spreader beam.  For the shear testing, the panel was set on its 

supports to induce a shear failure.  A line load was placed at a distance d from the joint centerline.  

A reaction support was placed at a distance d, 170 mm (6.63 in.) on the opposite side of the joint.  

This loading and support scheme created a high shear region coupled with minimal moment.  The 

load and deflection relationship along with the strand force were also monitored throughout the 

shear testing. 

 
 
 
 

 

Figure 2:  Small Scale Test Setup. 
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Small-Scale Results 

 

Testing of the small panels was accomplished in two phases.  Phase one consisted of 

testing the proposed curved-strand connection in flexure, and phase two consisted of testing the 

connection in shear.  The five flexure specimens were tested using a four point loading scheme, 

loading the joints in positive moment with no shear.  The behavior of the curved-strand and 

straight post-tensioning specimens through failure were compared.  The externally applied loads 

and loads in the post-tensioning strands were monitored and used to quantify the cracking and 

ultimate capacity of the members.   

Figure 3 shows the externally applied moment and the corresponding deflection 

relationships that were measured during testing of the five, small-scale, flexure tests.  Figure 3 

shows the initial behavior for each specimen is similar in terms of stiffness.  The cracking load 

was verified using the load in the strands.  After cracking, the straight post tensioned specimens 

demonstrated nearly plastic behavior until the ultimate moment was obtained.  The curved-strand 

specimens obtained a larger externally applied moment.  The curved-strand specimens also 

showed a very distinct inelastic region. 

Figure 4 shows the relationship that was measured between the externally applied load 

and the measured load in the strand.  The Curved C specimen had a load cell placed on each of 

the two strands at the dead and jacking ends.  Strand AD signifies Strand A on the Dead end.  

Strand AJ is strand A on the Jacking end and Strand BD and BJ are named similarly.  It can be 

seen from the figure that the load in the strand is initially nearly constant.  After the post-

tensioning stress in the joint is overcome, the section cracks.  At this point, the force in the strand 

increases as it is required to carry the tensile force.   
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Figure 3:  Applied Moment vs. Deflection. 

 
Overall, Figure 4 shows that each curved-strand specimen behaved similarly.  The 

cracking load for the curved-strand specimens ranged from 110 kN (24.7 k) to 130 kN (29.2 k) 

with the average cracking to be 120 kN (27.0 k) which corresponds to a cracking moment of 27.4 

kN-m  (20.2 k-ft).  This corresponds well with the average cracking moment for the curved-strand 

connection which was measured from Figure 3, of approximately 25.9 kN-m (19.1 k-ft).  The 

average value of the cracking moment of the straight post-tensioning connection was 

approximately 22.3 kN-m (16.5 k-ft).  These measured cracking moments resulted in the curved-

strand being 16% stronger than the straight post-tensioning. An analysis to find the cracking 

strength of the sections using the method of transformed sections results in the cracking moment 

being a function of the pre-stressing load and the specimen’s section modulus.  With these two 

values being constant, a constant cracking moment is calculated.  Likewise, until cracking occurs 
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the measured deflections are similar, this can be attributed to deflection being a function of 

boundary conditions and the flexural rigidity of the test specimen.   

Immediately after cracking of the curved-strand specimen occurs, the system flexural 

stiffness is reduced as more of the applied load is resisted by the post-tensioning strands.  At an 

average load of 42 kN-m (31.0 k-ft), the system began to behave plastically as can be seen from 

the deflection increasing while there was little increase in the external load.  The ultimate 

capacity of the system was defined when no additional external load could be maintained or when 

the concrete crushed.  The ultimate capacity of the proposed curved-strand connection was 

approximately 45.4 kN-m (33.5 k-ft).  The ultimate capacity of the straight post-tensioned 

connection was found to be 27.1 kN-m (20 k-ft), which was equal to 60% of the ultimate capacity 

of the proposed curved strand connection.  Overall the ultimate capacity of the curved-strand 

specimens was found to be greater than that of the straight post-tensioned system (Figure 3).  This 

can mainly be attributed to the greater strength and area of the curved-strand tendon.  A non-

dimensional value was derived and applied to each of the test specimens in order to non-

dimensionally compare the ultimate capacities of the test specimens using: 

 𝜁 =
10 ∗𝑀𝑜𝑚𝑒𝑛𝑡!"#$%

𝐴!𝑓!𝑏
 1.  

where 𝑀𝑜𝑚𝑒𝑛𝑡!"#$% is measured in kN-mm (k-in.).  𝐴! is the area of the tensile reinforcement 

that crosses the joint in mm2 (in.2).  The 𝑓! that was used was the stress in the steel in GPa (ksi).  

The width of the member was reported as 𝑏 in mm (in.).  The factor 10 was applied so that the 

ultimate capacity of the 1.8 m (72 in.) curved-strand connection was approximately equal to one. 

Table 1 presents the average normalized ultimate capacities of the proposed curved-

strand connection, standard post-tensioned connection, and for comparison the average 

normalized ultimate capacities of a 0.61 m (24 in.) and 0.91 m (36 in.) curved bolt connection 

tested by Porter et al. (2010).  All connection capacities were compared to a theoretical 

continuous concrete beam.  The theoretical continuous concrete beam that was used in the 
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calculations had geometric and reinforcement properties similar to the actual beams tested.  The 

beam was 18 in. wide and 8.75 in. thick.  Reinforcement was provided with four #6 bars with a 

top cover of 2.75 in., and four #6 longitudinal bars with 1 in. of bottom cover.  The theoretical 

ultimate capacity was calculated using a conventional Whitney stress block analysis (Porter et al. 

2010).  The cracking capacities of the specimens were compared using the experimentally 

obtained cracking moments, and dividing them by the width of the test specimens. 

By comparing the capacities of the test panels for this research to previous research it can 

be seen that the longer curved-strand connections have a larger cracking capacity than the curved 

bolt connection tested by Porter et al. (2010) under service loads.  By also presenting the results 

using the non-dimensional zeta value, the ultimate behavior of Porter and others’ (2010) 

specimens could be compared to the curved-strand connection. The ultimate capacity of the 

proposed 1.8 m (72 in.) curved-strand was 20% of the ultimate capacity of the theoretical 

continuous panel.   The ultimate capacity of the straight post-tensioned connection was found to 

be non-dimensionally equivalent to that of the proposed curved-strand connection.  The cracking 

capacity of the proposed 1.8 m (72 in.) curved-strand connection was 22% greater than that of the 

straight post-tensioned connection.  The 1.8 m (72 in.) curved-strand connection behaved 

similarly to the 0.91 m (36 in.) curved bolt connection tested by Porter et al. (2010), with an 

ultimate capacity equal to 107% of the capacity of the 0.91 m (36 in.) curved bolt.  The cracking 

capacity was found to increase as the post-tensioning employed approached a straight tendon.   

However, it was observed that the 1.8 m (72 in.) curved strand connection had a cracking 

capacity higher than the straight post-tensioning connection.  This was attributed to the increase 

in the pre-stressing steel area and strength of the curved strand connection.   

The small-scale shear testing was accomplished by applying a line load near the joint.  

From the applied loads and measured deflections, a shear capacity of the connection was 

obtained. Figure 5 shows the measured relationship between the externally applied load and the 

corresponding deflection for the shear specimen.  From this figure it can be seen that the 
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specimen showed a distinctive elastic range followed by a nearly plastic range.  The specimen 

was found to crack at approximately 700 kN (157.4 k).  After the specimen cracked the capacity 

decreases to 631 kN (142 k) as the panels slipped in the joint. 

The ultimate shear capacity of the system was found to be approximately 172.2 kN/m 

(11.8 k/ft).  The ultimate shear capacity of the system was calculated using the AASHTO LRFD 

Specifications to be 169.3 kN/m (11.6 k/ft).  The calculated capacity predicts the measured 

capacity of the system.  Afterwards, the external load was resisted by bearing and friction along 

the shear key and dowel behavior of the strand, at which point the capacity slightly increased.   

 
Table 1:  Zeta Values 

Connection 
Unit Cracking 
Moment, kN-
m/m (K-ft/ft) 

Ultimate ζ 

FEM Unit 
Cracking 

Moment, kN-
m/m (K-ft/ft) 

FEM Ultimate ζ 

1.8 m (72 in.) 
Curved-strand 

(Average) 

31.7 
(7.13) 1.02 32.5 

(7.30) 1.02 

Post-Tension  25.9 
(5.82) 1.02 32.4 

(7.29) 1.19 

0.61 m (24 in.) 
Curve Bolt 

(Porter et. al.) 

9.2 
(2.07) 0.43 N/A 0.57 

0.91 m (36 in.) 
Curve Bolt 

(Porter et. al.) 

18.4 
(4.13) 0.95 N/A 1.04 

Theoretical 
Continuous N/A 5.15 N/A N/A 
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Figure 4:  Applied Load vs. Load in the Strand. 

 
 

During this range the specimen continued to experience an increase in deflection for a 

nearly constant external load.  The test was terminated and the maximum shear capacity was 

obtained after the maximum sustained load began to decrease.  Figure 6 shows the cracking that 

occurred along the joint at the conclusion of the shear test.  The crack initiated at the right side 

near the externally applied line load and propagated down the right hand edge of the joint toward 

the middle of the joint.  The crack crossed the joint at approximately 30 degrees.  This failure 

mode deviates from a typical 45 degrees shear crack but is presumably due to the cold joint 

between the cast-in-place panel and the grout.     
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Figure 5:  Load vs. Deflection Shear Specimen. 
 

 

 

 

 

Figure 6:  Shear Failure (Test Specimen and ANSYS Models). 
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Pre-stress Losses 
 
 

Excessive pre-stress losses can lead to significant service issues in pre-stressed members.  

In order to quantify the pre-stress losses for the proposed curved-strand connection, an 

investigation into the losses was undertaken to understand long-term behavior of the connections.  

Initially the strands were stressed so that the deck panels had a calculated compressive stress 

equal to 1.72 MPa (250 psi) across the joint.  Load cells were applied behind all of the pre-

stressing chuck wedges to measure the actual pre-stressing force.  After the jacking was 

completed, one specimen was set aside and the changes in strand force were monitored for 

approximately the first 60 days.  The measured changes in pre-stressing loads were used to 

extrapolate an estimated loss at 75 years.  The final time of 75 years was selected as the goal of 

the service life for the precast decks based on a study done by UDOT (2010).  Figure 7 shows the 

measured losses at the dead and jacking end over time after seating.  Prior to jacking, seating and 

elastic shortening losses were compensated for by overstressing the strand by 20% based on 

measured losses from the initial panel.  A regression curve analysis was on the changes in strand 

stress performed and a natural log was fit to the average change in strand force data and is 

presented as Equation 2.  The equation was found to have a coefficient of correlation of 0.97 in 

comparison to the average measured losses.  

 ∆𝑓!" = 0.5164 ∗ ln 𝑡 + 0.9933 2.  

where t = Time  in  Days and ∆𝑓!" = Percentage  Loss.  Using Equation 2 to predict the long-

term, pre-stress total losses resulted in a value of 6% at 75 yrs (27394 days).  These long-term 

losses are lower than the typical long-term losses for pre-stressed girders, but are presumably a 

result of the relative low stress and reduced shrinkage loss from the delayed stressing of the 

precast member.  An estimate of the friction losses was obtained by subtracting the strand force at 

the dead end of the strand from the strand force at the jacking end.  Figure 7 shows that the 

difference in force between the dead and jacking ends remains relatively constant over time.  The 
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difference between the dead and the jacking end was found to be approximately 2%.  Because the 

joint is half of the distance between the jacking and dead ends, the friction loss at the joint, 

assuming a linear friction loss, can be estimated to be half of the loss between the two ends, or 

1%. 

 
Comparison with AASHTO LRFD Specifications 

 
 
 The measured strand losses were compared to those recommended in the AASHTO 

LRFD Specifications (2010).  In general, pre-stress losses can be broken into two different 

categories, instantaneous and long-term.  Instantaneous losses consist of friction, anchorage set, 

and elastic shortening.  Long-term losses are a function of creep and shrinkage of the concrete, 

and relaxation of the pre-stressing strand.  The total loss of pre-stressing is then calculated by 

summing the two groups of losses.   

 

 

Figure 7:  Pre-Stress Loss vs. Time. 
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 Anchorage set losses (C5.9.5.2.1) are due to the movement of the tendon as the wedge is 

set into the chuck.  For a wedge type anchor, a value of 3 mm (0.125 in.) can be used if power 

seating equipment is employed.  The total anchorage loss can be calculated using: 

 Δ𝑓!" =
Δ𝐸
𝐿

 3.  

where Δ𝑓!" = Anchorage  Seating  Loss, Δ = Wedge  Seating,  mm  (in.), 𝐸 = Elastic  Modululs  

of  Pre-‐Stressing  Steel,  GPa  (ksi),  and 𝐿 = Length  of  Pre-‐Stressing  Strand,  mm  (in.).  Using 

Equation 3 a value of the anchorage loss (  Δ𝑓!") of 335 MPa (48.6 ksi) was calculated.  With an 

initial pre-stressing stress of 1.19 GPa (173 ksi) this equates to a calculated anchorage loss of 

28.1%.   

Friction loss is the reduction in strand force caused by the friction between the post-

tensioning strand and the ducts.  Equation 4 is provided in the AASHTO LRFD Specifications to 

estimate this loss:   

 Δ𝑓!" = (1 − e! !"!!" ) 4.  

where 𝛥𝑓!" = 𝐹𝑟𝑖𝑐𝑡𝑖𝑜𝑛  𝑙𝑜𝑠𝑠, 𝐾 = 𝑊𝑜𝑏𝑏𝑙𝑒  𝐹𝑟𝑖𝑐𝑡𝑖𝑜𝑛  𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡, 𝑥 =  Length  of  Pre-‐

Stressing  Tendon  from  Jacking  End  to  Point  in  Consideration  (ft),  µμ = Coefficient  of  Friction, 

and α = 𝑆𝑢𝑚 of  Absolute  Value  of  Angular  Change  in  Pre-‐Stressing  Steel  Path.  

Equation 4 resulted in a calculated loss of 5%, or 55.6 MPa (8 ksi).  Comparing this calculated 

value to the measured difference (2%) between the two strand ends (Figure 7), shows that the 

AASHTO recommendation was conservative for this connection detail. 

 The third type of instantaneous loss that should be accounted for in design is loss due to 

elastic shortening.  This loss is caused by the panel shortening under the compressive load, thus 

reducing the overall tendon length and therefore strand stress: 

 Δ𝑓!"# =
𝑁 − 1
2𝑁

𝐸!
𝐸!"

𝑓!"# 5.  
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where Δ𝑓!"# = Elastic  Shortening  Loss, 𝑁 = Number  of  Identical  Pre-‐Stressing  Tendons, 

𝐸! = Modulus of Elasticity of Pre-Stressing Tendon, GPa (ksi), 𝐸!" = Modulus  of  Elasticity  of  

Concrete  at  Transfer,  GPa,  (ksi), and 𝑓!"# = Sum  of  Concrete  Stresses  at  Center  of  Gravity  of  

Pre-‐Stressing  Tendon  due  to  Pre-‐Stressing  Force  After  Jacking  and  Self-‐Weight  of  the  

Member,  MPa  (ksi).  Using the previously presented values for Ep and Eci, and the required joint 

compressive stress of 1.73 MPa (0.25 ksi), the elastic shortening loss (Δ𝑓!"#)  is calculated to be 

3.41 MPa (0.5 ksi), which is equal to 0.3% loss.   

 The total instantaneous losses were calculated to be the sum of the anchorage set losses, 

friction losses, and elastic shortening losses, which was equal to 33.4%.  The experimentally 

measured instantaneous losses were 13%.  Therefore the AASHTO LRFD Specifications were 

found to be equal to 2.6 times the measured instantaneous losses.  These losses were accounted 

for by overstressing the specimens by 20% during jacking. 

 Time-dependant losses can be calculated according to the AASHTO LRFD 

Specifications (2010) in two ways.  A lump sum loss can be used to predict future loss, or a more 

refined estimate of loss may be employed.  The lump sum method was used in this research to 

compare predicted creep, shrinkage, and relaxation losses with measured values.  Using the lump 

sum method resulted in an average calculated loss of 136 MPa (19.8 ksi), or 11.4%: 

 Δ𝑓!"# = 10
f!"A!"
A!

γ!γ!" + 12γ!γ!" + Δf!" 6.  

where   Δ𝑓!"# = Long  Term  Losses, f!" = Pre-‐Stressing  Steel  Stress  Immediately  Prior  to  

Transfer, A!" = Area  of  Pre-‐Stressing  Steel, A! = Gross  Area  of  Concrete, γ! = Correction  

Factor  for  Relative  Ambient  Humidity, and γ!" = Correction  Factor  for  Specified  Concrete  

Strength  at  Time  of  Pre-‐Stress. 

By using the lump sum method, and summing the short term losses with the long-term 

losses, a final loss is found to be 534 MPa (77.5 ksi), or 44.8%.  However, the anchorage seating 
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losses can be ignored due to the overstressing of the strands during construction; therefore the 

anchorage seating loss was zero.  By removing the seating losses from the equation, a calculated 

loss value of 196 MPa (28.4 ksi) was obtained.  This is equal to 16.4% after 75 years, which is 

2.7 times more than the measured values.  It was therefore concluded that the procedures in the 

AASHTO LRFD Specifications (2010) to calculate pre-stress losses are overly conservative when 

applied to this connection detail.   

 
Full-Scale Experimental Test Setup 

 
 
 Based on the positive results on the small-scale specimens, an investigation into the 

curved-strands connection behavior for negative moment was also performed.  In order to test the 

connections in negative bending, a full-scale, test specimen was constructed.  After casting and 

subsequent curing, the full-scale, precast deck specimens were placed on wide flange steel 

sections.  The precast deck specimens were made continuous with the steel I-girders through the 

use of welded shear studs.  A negative moment region was created by fixing one end of the 

specimen, placing a reaction beneath joint at midspan, and pushing down on the opposite end.  

The specimen was instrumented to measure the applied load and deflections at various locations. 

 The concrete decks used for the full-scale testing were 3.66 m (12 ft) wide by 2.44 m (8 

ft) long, with an overall depth of 222 mm (8.75 in.).  Shear pockets were cast into the deck panels 

in order to accommodate the shear studs.  Each panel had three shear pockets per girder, for a 

total of six in each deck panel.  One pocket was placed at the center of the deck, while the other 

two pockets were placed at 85 cm (33.5 in.) on either side of the center pocket.  The concrete 

used for the panels was the same as the small-scale specimens and had a specified 28-day strength 

of 27.6 MPa (4000 psi). The actual concrete compressive strength was measured to be 34.7 MPa 

(5040 psi).   The experimentally measured modulus of elasticity was found to be 35.2 GPa (5100 

ksi).  The rebar layout was identical to the layout used in the small-scale specimens (see Figure 1) 

and is typical of standard AASHTO deck reinforcement layouts.  The mild reinforcement had a 
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specified yield strength of 410 MPa (60 ksi).  The post-tensioning strands that were used were the 

same strands used in the small-scale specimens.  They were a 15.2 mm (0.6 in.) diameter, 1.86 

GPa (270 ksi) seven wire strand.  The connections alternated in length from 1.2 m (48 in.) to 1.8 

m (72 in.).  Figure 8 shows the alternating strand layout along the length of the deck.   

The girders used for the full-scale specimen were W530x300 (W21x122).  The girders 

had a manufacturer specified yield strength of 340 MPa (50 ksi).  The girder section size was 

chosen in order to maintain the elastic and plastic neutral axes of the specimen below the concrete 

deck throughout the load test. The location of the elastic neutral axis was determined using the 

method of transformed sections, and summation of internal forces for the plastic neutral axis.  In 

order to mitigate lateral torsional buckling of the girders during testing, stiffeners were welded 

onto the web of the girders.  The stiffeners were made of A36 plate steel with a specified yield 

strength of 250 MPa (36 ksi).  They were 16 mm (0.625 in.) thick, 130 mm (5 in.) wide, and 500 

mm (19 ¾ in.) long.  The stiffeners were placed at the point of loading as well as at the two 

reaction points.   

 The girders were placed at 1.8 m (6 ft) on center.  After the concrete reached its 28 day 

design compressive strength, the panels were placed onto the girders.  The joint was then grouted 

with Masterflow 928 grout.  After the grout cured, the pre-stressing strands were placed in the 

ducts and stressed.  The 1.8 m (72 in.) strands were jacked beginning in the middle of the deck 

and subsequently the outside strands.  Finally, the two 1.2 m (48 in.) strands were stressed.  

Stressing in this order was done in order to create an even distribution of pressure over the entire 

joint surface.  After the strand stressing, shear studs were welded onto the girders in the panel 

shear pockets.  The shear studs that were used were 150 mm (6 in.) long with a 22 mm (7/8 in.) 

diameter.  Each shear pocket had three shear studs placed in them.  The pockets and the haunch 

were then grouted.   

 The full-scale specimen was designed to be tested in negative bending.  Figure 9 shows 

the various dimensions of the test set-up used to induce the negative moment across the joint.  



29 
 

The specimen was supported as a beam with an overhang which puts the entire deck in a negative 

moment region, with the maximum moment occurring at the joint.  The load was applied to the 

overhanging end of the deck at a distance of 2.3 m (7.6 ft) from the center of the joint.  The load 

was applied using two hydraulic rams, one ram being centered over each girder line.   

One support was placed at the center of the joint, while the other support was placed at 

the edge of the concrete deck opposite of the applied load.  In order to restrain against uplift at 

this support, a restraining beam was placed over the decks and then bolted through the strong 

floor.  The restraining beam was placed at 2.3 m (7.6 ft) from the center of the joint.  In order to 

reduce the bearing stresses on the deck, a 300 mm (12 in.) wide plate was placed on the decks 

beneath the loads.  Spherical bearings were used to keep the load vertical applied to the specimen 

during testing.   

 

 

 

 

Figure 8:  Layout of Full-Scale Specimen Prior to Grouting. 
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In order to measure the applied loads, load cells were placed under the rams and above 

the spherical bearings.  On either side of the load cell a 50 mm (2 in.) plate was placed in order to 

minimize edge effects during loading.  The load was applied to the specimens at a rate of 2.2 kN 

(0.5 k) per second to avoid any dynamic effects. The instrumentation used to measure the 

specimen behavior during the test included load cells, string pots, and tilt-meters (Figure 9).  

Directly under the load at 2.3 m (7.6 ft) deflection measurements were recorded using a string 

pot.  Directly under the confining beam uplift was measured similarly.  Because of this, the 

reaction under the confining beam was moved out past the end of the deck in order to measure the 

uplift at a distance of 2.3 m (7.6 ft) from the joint centerline.  This distance was selected so that 

any uplift that occurred during the test could be directly subtracted from the deflection under the 

applied load.  A string pot was also placed at 0.97 m (3.2 ft) from the joint centerline in the 

direction of the confining beam.  This location was selected because it was the location of 

maximum positive deflection between the supports.  A tilt-meter was placed on each girder at the 

joint centerline.  The tilt-meter was placed at the middle reaction to measure the maximum 

rotation at the joint, and develop an experimental moment curvature diagram.  Three strain gages 

were placed on the web of the girders at 100 mm (4 in.) from the middle stiffener.  The strain 

gages were placed at 110 mm (4.3 in.), 270 mm (10.7 in.), and 450 mm (17.7 in.) from the bottom 

of the bottom flange in order to monitor the location of the neutral axis during testing.  

 
 

Full-Scale Experimental Results 
 
 
 The full-scale specimen was instrumented in order to monitor the external and reaction 

loads during testing.  Instruments were also applied to measure deflection along the length of the 

specimen and strains at various locations throughout the precast concrete deck.  The data 

measured during testing quantified the behavior of the specimen prior to failure.  From the 

recorded behavior during testing, the capacity of the system was obtained (Appendix B).  
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Figure 9:  Full-Scale Testing Setup. 
 
 
 Figure 10 shows the relationship between the externally applied load and the 

corresponding deflection that was measured during the test.  The deflection that is presented in 

Figure 10 was the measured deflection directly under the applied loads.  Two string pots were 

used to measure the deflection at this location, and the resulting values were then averaged.  The 

external load was applied using two 2220 kN (500 k) hydraulic rams, with each ram positioned 

directly over an individual girder.  The individual recorded applied loads were then combined to 

obtain the total applied load.  Figure 10 shows that the precast concrete deck of the specimen was 

observed to crack at an externally applied load of 150 kN (34 k) which is equal to an applied 

moment of 350 kN-m (260 k-ft).  This cracking is indicated by the slight change in the slope of 

the load versus deflection plot.  The stiffness of the system changes only slightly after cracking 

occurs.  This is due to the concrete adding little stiffness to the overall system.  After deck 

cracking occurred, the system continued to behave elastically as the steel girders were loaded in 

the elastic range.  The steel girder continued to resist the external load elastically until it began to 

yield at an externally applied load of 1890 kN (425 k) which is equal to an applied load of 4340 

kN-m (3200 k-ft).  
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The system reached its ultimate capacity at an externally applied load of 2200 kN (500 

k), which is equal to an applied moment of 5150 kN-m (3800 k-ft), where the specimen 

experienced increasing deflections with no increase in external load.  Previous research (Roberts 

2011) showed that the ultimate capacity of a full-scale standard post-tensioned deck had an 

ultimate capacity of 2290 kN (515 k).  Thus, the proposed curved-strand connection behaved 

comparably to a standard post-tensioning system. 

 One cause of concern of the precast deck panels was the placement of the grout pockets 

across the deck.  During testing, cracking was found to occur between pockets, starting at the 

pockets closest to the joint (Appendix A).  These cracks however occurred after the joint had 

already cracked and the crack widths had increased considerably.   

Figure 10:  Load vs. Deflection Under Load. 
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Therefore the loss of section due to the grouting pockets was found to be minimal in 

comparison to the joint capacity in negative flexure.  During testing the strain gages on the 

girders showed the neutral axis started near the composite section and ended near the steel girder 

neutral axis at failure. 

 Figure 11 shows the joint condition at the failure load.  The joint was observed to crack 

as the cracking capacity was exceeded.  The shear key was observed to separate from the precast 

deck panel on the restrained side of the test specimen.  The concrete deck was not observed to 

crack near the joint.  The joint opening was measured to be 6.5 mm (0.26 in.) as the steel section 

began to yield.  When the ultimate capacity was initially reached the crack was measured to be 

17.5 mm (0.69 in.).  At failure the steel girders showed some initial signs of web buckling and 

flange yielding over the support. 

 
Full-Scale Comparison to AASHTO LRFD Specifications 

 
 
 The AASHTO LRFD Specifications (2010) were used to calculate load levels that 

theoretically would induce specific specimen behavior.  Three different loading magnitudes were 

of interest in the study, cracking, steel yielding, and the ultimate capacity.  After testing the 

calculated specimen behavior was compared to the experimentally measured values.  This 

comparison was then used to determine the accuracy of the code methodologies in predicting the 

observed behavior. 

 In order to calculate the cracking and yield loads of the specimens the transformed 

section properties were calculated.  A uniform compressive stress of 1.72 MPa (0.25 ksi) due to 

the pre-stressing strand was applied across the joint width.  Using these values and Euler-

Bernoulli beam theory, the cracking moment was then obtained.  The cracking moment was 

found to be 470 kN-m (350 k-ft), which is equal to an externally applied load of 200 kN (45.9 k) 

for the testing configuration.   
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Figure 11:  Full-Scale Joint (Physical and FEM Model). 
 
 
The observed cracking moment was 25% less than the calculated value.  This may be attributed to 

the cold joint not being monolithic concrete across the joint.   

 After the section cracks, the resisting force was transferred to the pre-stressing steel and 

the steel girders.  The moment of inertia of the system was also reduced with the loss of the 

concrete section.  Yielding in the steel flanges and in the pre-stressing steel was checked, and the 

yield moment in the bottom flange was found to control.  The yield moment for the cracked 

section was found to be 3860 kN-m (2850 k-ft), which corresponds to an applied load equal to 

1680 kN (377 k).  The calculated yield value was found to be 11% less than the measured value.   

 The ultimate capacity of the system was also obtained using the procedure set forth in the 

AASHTO LRFD Specifications (2010).  The recommended method has three steps; the first is to 

identify the region on the beam where the plastic neutral axis is located, after which the exact 

location is calculated.  Finally the moment capacity is calculated by summing moments about the 

neutral axis.  Using this method the ultimate capacity of the system was found to be 4950 kN-m 

(3650 k-ft).  This ultimate moment is equal to an applied load of 2150 kN (483 k).  As a result the 

specifications predict an ultimate capacity that was 4% less than the measured ultimate capacity.   
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Finite-Element Model Analysis 

 
 
 Finite-element models were created for the small and large-scale specimens using 

ANSYS.  ANSYS was selected because of its ability to model cracking and crushing of a brittle 

material (concrete), as well as elasto-plastic behavior of a ductile material (steel girder and pre-

stressing strand).  The finite-element models had the same geometry as the physical specimens, 

and the material properties applied in ANSYS were selected to match the measured material 

properties.  The elements used in the model were chosen to replicate the behavior that was 

observed during testing.  After the models were created and their attributes assigned, it was then 

meshed.  After meshing, a solution routine was performed which defined the boundary conditions 

and the applied loads.  From the results of the finite-element model analyses, a comparison was 

performed with the measured data recorded during the specimen testing. 

 The concrete and grout for the small-scale models were modeled using SOLID65 

elements.  The SOLID65 element was selected because of its cracking and crushing 

characteristics.  The concrete properties were assigned to have a compressive strength equal to 

the measured values and a rupture strength equal to 3.86 MPa (0.56 ksi).  The shear transfer for a 

closed crack was set at 30% and the shear transfer for the open crack was set at 15%.  

Reinforcement in the concrete was modeled using a smeared reinforcement ratio of 0.0119 in the 

longitudinal direction, and 0.021 in the transverse to replicate actual values.  The grout was 

assigned a specified compressive strength and a rupture strength equal to 2.82 MPa (0.41 ksi).  

The concrete and grout volumes were modeled separately and connected using contact and target 

elements.  Contact and target elements work together to connect two solids at a single node.  

TARGE170 was assigned to the grout, while CONTA173 was applied to the concrete.  A fkn 

value of 0.01 was applied.  This value is a factor indicating the amount of normal stress that is 

transferred between the elements.  The pre-stressing strand was modeled using LINK8 elements.  

The LINK8 element has two nodes, one on either end of the element.  The element is only 
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capable of transferring load in an axial direction.  Material properties of these elements were 

assigned based on specified values from the manufacturer.  The elements were assigned a cross-

sectional area of 140 mm2 (0.215 in2).  The initial pre-stressing load was induced by applying an 

initial strain in the LINK8 elements.   

 The full-scale negative flexure specimen was modeled using the same values for the 

concrete and grout.  In addition, the pre-stressing strand was modeled similarly.  The girders were 

modeled using SOLID45 elements.  SOLID45 elements were selected because of their ability to 

exhibit elastic and plastic behavior of a ductile material.  The stress-strain relationship was 

defined using a bi-linear isotropic curve.  An initial elastic modulus equal to 200 GPa (29,000 ksi) 

was applied, until yielding occurred at 50 ksi.  The connection between the steel I-girders and the 

precast concrete deck was enforced using TARGE170 and CONTA173.  The shear studs were 

modeled using COMBIN39 elements, which is a two node spring with a user defined load versus 

deflection relationship.  A fkn value of 0.0015 was used for the normal stress transfer, and 0.05 

was used for the fkt value.  The fkt value is a measure of the amount of sliding stress that is 

transferred between the CONTA173 and TARGE170 elements.   

 After the models were created and material properties assigned, the individual elements 

were meshed and boundary conditions were applied.  The elements in the models were meshed to 

have an approximate size of 50 mm (2 in.).  Loads were applied by using the ultimate loads 

measured during the physical testing, and the analysis was performed with a total time of 100 to 

avoid any dynamic effect.  The target loads were 245 kN (55 k) for the small flexure panels, 890 

kN (200 k) for the shear panel, and 2450 kN (550 k) for the full-scale model. 

 Figure 3 shows the externally applied moment and the corresponding deflection curve 

from the finite-element model along with the experimental results from the small-scale flexural 

testing.  The figure shows that a good correlation between the physical model and the ANSYS 

model existed.  Cracking is observed to occur on the curved strand finite-element model at 

approximately 30 kN-m (22.1 k-ft).  The ANSYS model cracked within 9.5 % of the cracking 
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value as the physical models.  The ANSYS model accurately predicts the stiffness of the post 

crack behavior through the ultimate capacity.  The ultimate capacity of the curved strand ANSYS 

model was 46.1 kN-m (34.0 k-ft) which is within 9.8% of the value measured during the 

experimental testing.  The straight post-tensioned model was modeled similarly to the curved 

strand model.  It was found to have a cracking capacity of approximately 28.0 kN-m (20.6 k-ft).  

The ANSYS model cracked within 25% of the cracking value of the physical models.  The 

ultimate capacity of the straight post-tensioned ANSYS model was found to be approximately 

28.8 kN-m (21.3 k-ft).  The ultimate capacity of the straight post-tensioned ANSYS model was 

within 3% of the measured value from the physical models.    

Figure 5 presents the external force and corresponding displacement computed by 

ANSYS for the shear panel.  Overall, the ANSYS model behaved in a similar manner as the 

tested specimen.  The ANSYS model predicted a cracking load of 623 kN (140 k), which is 

within 1.2% of the cracking load measured during the experimental testing.  After cracking 

occurred the ANSYS model did not support any additional load as it continued to deflect.  As a 

result, the ANSYS cracking load also corresponds to the ultimate capacity which was also the 

general behavior of the experimental test specimen.  The ANSYS model accurately predicted the 

cracking pattern that occurred in the experimental test as can be seen in Figure 6.  The model 

shows cracking occurring from the loading point and moving towards the joint.  Horizontal 

cracking was predicted under the load moving away from the joint.  This was also observed in the 

actual testing of the specimens.   

Figure 10 presents the load versus deflection results for the finite-element model for the 

full-scale specimen.  The initial stiffness of the model is 16% greater than the stiffness of the test 

specimen.  This increased stiffness is attributed to the SOLID elements deforming rather than 

bending, in an occurrence commonly known as locking.  The ANSYS model predicted a yield 

capacity of 1870 kN (420 k), which is 99% of the yield capacity that was measured.  The ANSYS 

model has an ultimate capacity of approximately 2300 kN (520 k).  This was 4.5% larger than the 
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measured value.  The full-scale finite-element model predicted the behavior and capacities that 

were measured in the field to an acceptable degree of accuracy.  Figure 11 shows the modeled 

joint at the ultimate capacity of the system.  The joint is seen to be in tension as the ultimate 

capacity is reached.  This corresponds to the joint opening observed during testing.  The model 

also showed the initial stages of web buckling which was also observed on the test specimen. 
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CHAPTER IV 

CONCLUSIONS 
 
 

The need for efficient bridge replacement techniques has lead to innovative solutions to 

reduce bridge construction time.  One of those replacement techniques that has been successfully 

used is the implementation of precast concrete deck panels.  Despite the many benefits of precast 

concrete deck panels, long-term service can be an issue due to the inherent joints.  These joints 

have been found to leak unless post-tensioning is used to effectively seal the joints.  However, 

standard post-tensioning used to seal the joints typically inhibits the rapid replacement of a single 

deck panel.  The proposed curve strand connection investigated in this research works to mitigate 

the time delay in the replacement of a single precast concrete deck panel, while retaining post-

tensioning benefits of sealing the joint against leakage.  The proposed curved-strand connection 

was tested using small-scale specimens in flexure and shear in addition to full-scale testing in 

negative bending.  The behavior of the proposed curved-strand connection was then compared to 

the performance of other connection types and the capacity in accordance to the AASTHO LRFD 

Specifications.  The proposed curved-strand connection was found to behave comparable in 

strength to the standard post-tension connections.  Pre-stress losses were also measured and 

compared to the predicted values.  The proposed curved-strand connection was found to exhibit 

an acceptable level of pre-stress losses.  The following conclusions were based on the data 

gathered during testing: 

1. The ultimate capacity of the proposed curved stand connection was found to be 

approximately equal to the standard post-tensioning.  The curved-strand connection 

had an ultimate capacity of 42 kN-m (31.0 k-ft), with a cracking capacity of 

approximately 25.9 kN-m (19.1 k-ft) which corresponds to approximately 116% and 

100% of the respective values for the standard post-tensioned connection. 
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2. Pre-stress losses were measured by monitoring strand force on a panel connection 

over time.  During the pre-stressing of the member, anchorage and friction losses 

were measured via load cells.  After jacking, changes in strand forces were monitored 

for a period of approximately 60 days.  Using the measured changes in the strand 

force, the amount of pre-stress loss was calculated.  A regression curve analysis was 

performed and the results were used to predict the long-term loss of the proposed 

curved-strand connection.  These long-term losses were predicted to be 

approximately 6% at 75 years.  These measured losses were  found to be less than the 

predicted values from the AASHTO LRFD Specifications. 

3. A beam shear test was performed across a 3.7 m (12 ft) section of joint via a line 

load.  The test specimen was found to have a cracking capacity of 191.4 kN/m (13.1 

k/ft).  At cracking the system reached its full shear capacity.  After cracking occurred 

the resistance to shear was greatly reduced, and the pre-stressing steel resisted the 

shearing force via dowel action.  The test specimen was found to have an ultimate 

capacity of 172.2 kN-m (11.8 k/ft).     

4. A full-scale, composite section was constructed to observe the behavior of the 

proposed curved-strand connection subjected to negative bending moments.  The test 

involved placing precast concrete deck panels on steel I-girders.  The curved-strand 

connection was found to have an ultimate capacity of 2200 kN (500 k).  This value 

was 3.5% larger than the calculated value obtained using the AASHTO LRFD 

Specifications. 

5. Finite-element models were developed using ANSYS for the small-scale and full-

scale test specimens.  The models were developed using elements that most closely 

reflected the measured material properties.  The ANSYS models accurately predicted 

the behavior that was measured during testing.  The ANSYS model predicted the 

ultimate capacity of the small-scale flexure specimen to be 46.1 kN-m (34 k-ft), 
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which is equal to 109% of the measured value.  The shear model accurately predicted 

the cracking patterns observed around the joint during shear testing.  The ANSYS 

shear model had an ultimate capacity of 623 kN (140 k) which was 98% of the 

measured capacity of the shear system. 
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APPENDICES 
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APPENDIX A.  Test Setup and Specimen Construction 



46 
 

 

Figure 12:  Small Specimens Prior to Concrete Placement. 

 

 

Figure 13:  Full-Scale Specimen Rebar and Pocket Layout. 
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Figure 14:  Placing Concrete in Shear Specimen. 

 
 

 

Figure 15:  Aggregate Exposed in Joint for Grouting. 
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Figure 16:  Joint Prior to Grouting and Grouted. 
 

 

Figure 17:  Post-Tensioning Bearing Plate and Connection. 
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Figure 18:  Load Cell on Curved Strand Connection. 
 

 

Figure 19:  Post-Tensioning. 
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Figure 20:  Placement of Precast Panels on Steel I-Girders. 
 

 

Figure 21:  Shear Studs After Welding. 
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Figure 22:  Small Scale Test Setup. 
 

 

Figure 23:  Flexural Failure of Small Scale Specimen. 
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Figure 24:  Shear Test Setup. 
 

 

Figure 25:  Shear Reactions. 
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Figure 26:  Shear Crack Propagating Along Joint. 
 

 

Figure 27:  Full Scale Loading. 
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Figure 28:  Uplift Restraint Beam. 
 

 

Figure 29:  Full Scale Test Setup. 
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Figure 30:  Cracking Along Joint. 
 

 

Figure 31:  Joint Opening. 
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Figure 32:  Flexural Cracking of Deck Panel Away from Joint. 
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APPENDIX B.  Recorded Data 
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Figure 33:  Strand Load vs. Time. 

 
 
 Figure 33 presents the measured load in the strands of the pre-stress loss specimen.  The 

figure shows that the initial load reduces a relatively large amount in a short period of time.  At 

approximately 20 days the loss of load in the strand begins to decrease.   
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Figure 34:  Applied Shear Load vs. Load in Pre-Stresssing Strand. 

 
 
 Figure 34 presents the relationship between the externally applied shearing load and the 

load in the pre-stressing strand.  The figure shows that as the applied load approaches 700 kN 

(157.4 k), the load in the strand is relatively constant.  After the cracking capacity of the system is 

reached at approximately 700 kN (157.5 k), the strand begins to receive more load.  As the 

section cracked the hydraulic ram used to load the system could not keep up with the deflection 

of the specimen.  Therefore the applied load began to decrease as the system and the system acted 

plastic at its ultimate capacity of approximately 631 kN (142 k).  At this point in the loading, the 

load in the strand increases as the applied load stays the same. 
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Figure 35:  Externally Applied Moment vs. Rotation at Joint. 

 

 Figure 35 presents the relationship between the moment at the joint due to the externally 

applied load and the rotation at the joint.  Figure 35 shows the initial rotational stiffness is 

approximately 333.3 MN-m/rad (245.9 k-ft/rad).  The specimen cracks at approximately 350 kN-

m (260 k-ft).  After the specimen cracks, the stiffness reduces by 15% to 283.6 kN-m/rad (209.2 

k-ft/rad).  This stiffness is constant until the applied moment reaches the yield moment for the 

steel.  At approximately 4340 kN-m (3200 k-ft) the steel I-girders begin to yield, and the ultimate 

capacity is reached at approximately 5150 kN-m (3800 k-ft). 
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Figure 36:  Externally Applied Moment vs. Joint Opening. 

 
 

Figure 36 presents the relationship between the moment at the joint due to the externally 

applied load and the corresponding opening of the joint.  Initially the joint is very stiff, with a 

stiffness of approximately 26.7 GN-m/cm (50,000 k-ft/in).  At approximately 350 kN-m (260 k-

ft) the stiffness reduces by 78% to 5.9 GN-m/cm (11000 k-ft/in).  This was found to be the 

cracking capacity of the section.  The joint opening was measured by a two string pots on across 

the joint (see Figure 30).  Therefore an average change in length was measured across the string 

length.  The string pots were attached to the deck and were therefore able to rotate with the deck, 

therefore the presented joint opening was more than the actual observed joint opening.  At the 

ultimate capacity the observed joint opening was approximately 1.9 cm (0.75 in) (see Figure 31).   
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