ABC Innovative Projects

Sedley Bridge	е									
Location	Sedley Road (CR 475W) over the Norfolk/Southern/CSX railroad tracks in Porter County near Wheeler in northern Indiana									
State	Indiana									
Owner	Porter County									
Year ABC Built										
State ID #	Porter 210									
NBI#	6400117									
Coordinates	<i>Latitude:</i> 41.503861 <i>Longitude:</i> -87.157972									
Contact Person	Raymond Riddell Director of Engineering Porter County Government, Indiana Phone: 219-465-3574 Email: rriddell@porterco.org									
Mobility Impact Time	ABC:				Convention	al:				
Impact	Tier	1	Tier 2	T	ïer 3	Tier 4	Tier 5			
Category							X			
Driver(s)	 maintained throughout construction reduced onsite construction time improved work-zone safety improved site constructability – 14-inch-deep section provided greater vertical clearance over railroad tracks improved material quality and product durability minimized environmental impacts reduced cost – shallow section depth allowed shorter approaches to meet railroad grade requirements 									
Description	grade re	equiremer		depth all	owed shorter					

bridge; the distance from the top of the deck to its lowest point was only 14 inches. Construction Methods: The existing bridge was closed and traffic detoured. The bridge was demolished conventionally. The new bridge substructure was comprised of 14-inch steel-encased concrete piles with MSE walls on concrete leveling pads. First the deck panel and work platform support assemblies were installed on the girders. The girders were then erected with cranes onto the abutment bearings. Steel struts were attached at the abutments as temporary lateral supports, and the first stage of post-tensioning was done. The deck panels were erected with a crane onto temporary wooden shelves that were attached to the girder bottoms with high-strength steel bars. After all panels were placed, the closure joints between the panels and girders were grouted, and the bridge was post-tensioned transversely and longitudinally. Post-tensioning ducts and recess pockets were then grouted. Traffic barriers and microsilica overlay were installed. The temporary deck panel support assemblies were removed and the bridge was opened to traffic. The project was let on February 23, 1999. The Notice to Proceed was given on March 29, 1999. The construction was substantially complete on March 3, 2001. The last work was on March 18, 2002. The contract allowed 140 work days: 136 work days were used. Stakeholder Feedback: Use of the through-girder with its shallow depth below deck resulted in significant cost savings. The north approach construction alone was reduced in length by almost a quarter mile. High Performance Decision-Making Tools Site Procurement Procurement Contracting Project <t< th=""></t<>
Construction Methods: The existing bridge was closed and traffic detoured. The bridge was demolished conventionally. The new bridge substructure was comprised of 14-inch steel-encased concrete piles with MSE walls on concrete leveling pads. First the deck panel and work platform support assemblies were installed on the girders. The girders were then erected with cranes onto the abutment bearings. Steel struts were attached at the abutments as temporary lateral supports, and the first stage of post-tensioning was done. The deck panels were erected with a crane onto temporary wooden shelves that were attached to the girder bottoms with high-strength steel bars. After all panels were placed, the closure joints between the panels and girders were grouted, and the bridge was opst-tensioned transversely and longitudinally. Post-tensioning ducts and recess pockets were then grouted. Traffic barriers and microsilica overlay were installed. The temporary deck panel support assemblies were removed and the bridge was opened to traffic. The project was let on February 23, 1999. The Notice to Proceed was given on March 29, 1999. The construction was substantially complete on March 3, 2001. The last work was on March 18, 2002. The contract allowed 140 work days; 136 work days were used. Stakeholder Feedback: Use of the through-girder with its shallow depth below deck resulted in significant cost savings. The north approach construction alone was reduced in length by almost a quarter mile. Photos Decision-Making Tools Site Procurement Procurement Contracting Project Decision-Making Tools Site Procurement Procurement Contracting P
Construction Methods: The existing bridge was closed and traffic detoured. The bridge was demolished conventionally. The new bridge substructure was comprised of 14-inch steel-encased concrete piles with MSE walls on concrete leveling pads. First the deck panel and work platform support assemblies were installed on the girders. The girders were then erected with cranes onto the abutment bearings. Steel struts were attached at the abutments as temporary lateral supports, and the first stage of post-tensioned, and the bridge was post-tensioned transversely and longitudinally. Post-tensioning ducts and recess pockets were then grouted. Traffic barriers and microsilica overlay were installed. The temporary deck panel support assemblies were removed and the bridge was opened to traffic. The project was let on February 23, 1999. The Notice to Proceed was given on March 12, 1999. The construction was substantially complete on March 3, 2001. The last work was on March 18, 2002. The contract allowed 140 work days; 136 work days were used. Stakeholder Feedback: Use of the through-girder with its shallow depth below deck resulted in significant cost savings. The north approach construction alone was reduced in length by almost a quarter mile. High Performance Materials Photos Additional photos Project Decision-Meking Tools Site Procurement Procurement Contracting • • • Design-bid-build •
Construction Methods: The existing bridge was closed and traffic detoured. The bridge was demolished conventionally. The new bridge substructure was comprised of 14-inch steel-encased concrete piles with MSE walls on concrete leveling pads. First the deck panel and work platform support assemblies were installed on the girders. The girders were then erected with cranes onto the abutment bearings. Steel struts were attached at the abutments as temporary lateral supports, and the first stage of post-tensioning was done. The deck panels were erected with a crane onto temporary wooden shelves that were attached to the girder bottoms with high-strength steel bdars. After all panels were placed, the closure joints between the panels and girders were grouted, and the bridge was post-tensioned transversely and longitudinally. Post-tensioning ducts and recess pockets were then grouted. Traffic barriers and microsilica overlay were installed. The temporary deck panel support assemblies were removed and the bridge was opecket were then grouted. Traffic barriers and microsilica overlay were installed. The temporary deck panel support assemblies were removed and the bridge was opened to traffic. The project was let on February 23, 1999. The Notice to Proceed was given on March 29, 1999. The construction was substantially complete on March 3, 2001. The last work was on March 18, 2002. The contract allowed 140 work days: 136 work days were used. Stakeholder Feedback: Use of the through-girder with its shallow depth below deck resulted in significant cost savings. The north approach construction alone was reduced in length by almost a quarter mile. High Performance Decision-Making Tools Site Procurement Procurement Contracting
Construction Methods: The existing bridge was closed and traffic detoured. The bridge was demolished conventionally. The new bridge substructure was comprised of 14-inch steel-encased concrete piles with MSE walls on concrete leveling pads. First the deck panel and work platform support assemblies were installed on the girders. The girders were then erected with cranes onto the abutment bearings. Steel struts were attached at the abutments as temporary lateral supports, and the first stage of post-tensioning was done. The deck panels were erected with a crane onto temporary wooden shelves that were attached to the girder bottoms with high-strength steel bars. After all panels were placed, the closure joints between the panels and girders were grouted, and the bridge was post-tensioned transversely and longitudinally. Post-tensioning ducts and recess pockets were then grouted. Traffic barriers and microsilica overlay were installed. The temporary deck panel support assemblies were removed and the bridge was opened to traffic. The project was let on February 23, 1999. The Notice to Proceed was given on March 29, 1999. The construction was substantially complete on March 3, 2001. The last work was on March 18, 2002. The contract allowed 140 work days; 136 work days were used. Stakeholder Feedback: Use of the through-girder with its shallow depth below deck resulted in significant cost savings. The north approach construction alone was reduced in length by almost a quarter mile. High Performance Additional photos Decision-Making Tools Site Procurement Procurement Contracting
Construction Methods: The existing bridge was closed and traffic detoured. The bridge was demolished conventionally. The new bridge substructure was comprised of 14-inch steel-encased concrete piles with MSE walls on concrete leveling pads. First the deck panel and work platform support assemblies were installed on the girders. The girders were then erected with cranes onto the abutment bearings. Steel struts were attached at the abutments as temporary lateral supports, and the first stage of post-tensioning was done. The deck panels were erected with a crane onto temporary wooden shelves that were attached to the girder bottoms with high-strength steel bars. After all panels were placed, the closure joints between the panels and girders were grouted, and the bridge was post-tensioned transversely and longitudinally. Post-tensioning ducts and recess pockets were then grouted. Traffic barriers and microsilica overlay were installed. The temporary deck panel support assemblies were removed and the bridge was opened to traffic. The project was let on February 23, 1999. The Notice to Proceed was given on March 29, 1999. The construction was substantially complete on March 3, 2001. The last work was on March 18, 2002. The contract allowed 140 work days; 136 work days were used. Stakeholder Feedback: Use of the through-girder with its shallow depth below deck resulted in significant cost savings. The north approach construction alone was reduced in length by almost a quarter mile. High Performance Additional
Construction Methods: The existing bridge was closed and traffic detoured. The bridge was demolished conventionally. The new bridge substructure was comprised of 14-inch steel-encased concrete piles with MSE walls on concrete leveling pads.First the deck panel and work platform support assemblies were installed on the girders. The girders were then erected with cranes onto the abutment bearings. Steel struts were attached at the abutments as temporary lateral supports, and the first stage of post-tensioning was done. The deck panels were erected with a crane onto temporary wooden shelves that were attached to the girder bottoms with high-strength steel bars. After all panels were placed, the closure joints between the panels and girders were grouted, and the bridge was post-tensioned transversely and longitudinally. Post- tensioning ducts and recess pockets were then grouted. Traffic barriers and microsilica overlay were installed. The temporary deck panel support assemblies were removed and the bridge was opened to traffic.The project was let on February 23, 1999. The Notice to Proceed was given on March 29, 1999. The construction was substantially complete on March 3, 2001. The last work was on March 18, 2002. The contract allowed 140 work days; 136 work days were used.Stakeholder Feedback: Use of the through-girder with its shallow depth below deck resulted in significant cost savings. The north approach construction alone was reduced in length by almost a quarter mile.High Performance
 Construction Methods: The existing bridge was closed and traffic detoured. The bridge was demolished conventionally. The new bridge substructure was comprised of 14-inch steel-encased concrete piles with MSE walls on concrete leveling pads. First the deck panel and work platform support assemblies were installed on the girders. The girders were then erected with cranes onto the abutment bearings. Steel struts were attached at the abutments as temporary lateral supports, and the first stage of post-tensioning was done. The deck panels were erected with a crane onto temporary wooden shelves that were attached to the girder bottoms with high-strength steel bars. After all panels were placed, the closure joints between the panels and girders were grouted, and the bridge was post-tensioned transversely and longitudinally. Post-tensioning ducts and recess pockets were then grouted. Traffic barriers and microsilica overlay were installed. The temporary deck panel support assemblies were removed and the bridge was opened to traffic. The project was let on February 23, 1999. The Notice to Proceed was given on March 29, 1999. The construction was substantially complete on March 3, 2001. The last work was on March 18, 2002. The contract allowed 140 work days; 136 work days were used. Stakeholder Feedback: Use of the through-girder with its shallow depth below deck resulted in significant cost savings. The north approach construction alone was reduced in length by almost a quarter mile.
middle of the roadway. This cross-section maximized the vertical clearance under the

				 IVIICIO 	silica ove	ted erlay			
	The engineer's estimate for the project was \$ 2.35 million. The low bid was \$2.29 million (\$64,000 = 2.7% lower than engineer's estimate). There were six bidders. The overall cost was \$1 million less than the next alternative design solution.								
Funding	Federal only		State only	F	Federal an		Other		
							80% Federal, 20% LPA		
Incentive	Highways for LII	E IBRD		SHRP2		P2	Other		
Program (\$)									
Contract Plans C	Complete Set:			ABC *:	Elevati	on (link to	pdf)		
Specifications C	Complete Set:	Specia to pdf)	<u>al Provisions</u> (link	ABC *:	:				
Bid Tabs	Bid Summary (link to pdf)								
Schedule E	Engineer's:					Overall P to pdf)	Project Schedule (link		
Other Related Information	<u>'Through-Girder Bridge Offers Low Clearance," Spring 2002 ASCENT</u> (link to pdf)								
Photo Credits Ir	Indiana Department of Transportation								

Specific to the ABC used in the project.